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The roles played by divalent cations (calcium, magnesium and iron) 
of rock minerals in the efficiency of mineral carbonation have been 
investigated. Statistical modeling with Artificial Neural Network (ANN) 
having configuration ANN[17-4-1] shows that carbonation efficiency 
largely increases as the quantity of calcium content increases. Averagely, 
there is approximately 5% rise in the original efficiency for 10% increase 
in the quantity of calcium. This changes to 3.4% and 1.6% increases in 
efficiency, relative to the original efficiency for 20% and 30% increases in 
calcium content, respectively. Iron content of minerals offers clear positive 
correlation to the carbonation efficiency. From the global average, there is 
approximately 17% rise in the original efficiency for 10% increase in the 
quantity of iron. This increases to 29% and 41% over the original efficiency 
for 20% and 30% increases in iron content, respectively.. The influence of 
magnesium was found to be mainly negatively correlated to carbonation 
efficiency, after exceeding an unknown threshold. The global average of the 
efficiency changes with magnesium content results in original efficiency 
rising by 2% at 10% quantity increase and then reduces by 3% and 9% for 
20% and 30% increase in magnesium quantity, respectively, relative to the 
original efficiency. Thus, iron compounds are found to be most potent of 
the divalent cations in carbonation reaction while calcium and magnesium 
content should maintain a threshold ratio with silica content for improved 
efficiency. 
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1. Introduction

The task of stemming the global warming effects on 
the planet requires the deployment of very effective and 
capable solutions. The ultimate solutions should be cheap, 

abundant and simple to apply, considering the scale of 
greenhouse gases in the atmosphere and the diversity of 
emission sources, globally. One such solution process 
is mineral carbonation, which offers the advantage of 
permanent storage to CO2, in addition to cheapness and 
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ease of application. The world is blessed with plethora of 
abundant mineral resources to perform the task of miner-
al carbonation [1]. The abundance of basalt is one strong 
factor that will positively upgrade the performance of 
mineral carbonation in the fight against climate change [2].  
Mineral carbonation offers the benefits of permanent and 
safe storage [2] with opportunities for making use of ubiq-
uitous earthly minerals [3], either as whole materials or as 
mine wastes [4]. 

To understand and improve the carbonation potentials 
of mineral, the chemical contents of the minerals must be 
analyzed to know the roles each component play in the re-
action. According to Huijgen and Sanna et al. [5,6], carbon-
ation rate is controlled by the diffusion of Ca2+ through the 
solid Si-rich layers in silicate minerals. Thus, the presence 
of calcium is significant to determine the performance of 
mineral carbonation. Mineralogical and chemical com-
position were of great importance for the mineral car-
bonation process [7]. Ramli et al. [7] indicates that divalent 
cations, pH and particle size are important parameters to 
consider in the carbonation yield. This points to the im-
portance of calcium (Ca2+), magnesium (Mg2+) and others 
present in the rock minerals. The same concept can also 
be extended to iron (Fe2+), making the group of common 
divalent cations. Thus, the optimum conditions for the oc-
currence of mineral carbonation are greatly dependent on 
the experimental conditions and material properties [8]. 

From the above, it is clear that the chemical constitu-
ents of the rock minerals are major determinants of the 
carbonation efficiency. While many factors can be con-
sidered, this work focuses on the roles played by divalent 
cations (calcium, magnesium, iron) in the success of 
mineral carbonation process with the aid of computational 
tool- Artificial Neural Network (ANN). 

This work aims to demonstrate the feasibility of uti-
lizing ANN to understand the patterns and the conditions 
of contribution of divalent cations (calcium, magnesium 
and iron) of rock minerals in the efficiency of mineral 
carbonation. The study will be among the first set of pub-
lications, in the open literature, to utilize the concept of 
machine learning to predict and forecast the carbonation 
efficiency of rock materials based on mineral contents.

2. Materials and Methods

The methods of this investigation involved sourcing of 
reliable data from literature with which different config-
urations of ANN were trained. The performances of the 

trained networks (ANNs) were then assessed to arrive at 
the best-performing ANN configuration. This best-per-
forming configuration was then used to predict and fore-
cast carbonation efficiency based on the influences of 
mineralogical and chemical constituents of rock materials 
as well as the experimental conditions. 

2.1 ANN Configuration 

In this work, different ANN configurations were trained 
and evaluated to arrive at the best network for predicting 
mineral carbonation from rock characteristics and process 
conditions. The networks were configured with feedfor-
ward structure while back-propagation algorithm was 
employed for the purpose of training. The ANN structure 
was in the form ANN[X-Y-Z] where ‘X’ is the number of 
input variables; ‘Y’ is the number of neurons in the hid-
den layer and ‘Z’ is the number of variables in the output 
layer. Different ANN configurations were tested using the 
approaches followed by Hanspal and Abidoye et al. [9,10]. 
Networks were created using single layer alone but with 
different number of neurons in each of the layers. The 
number of neurons was progressively increased for dif-
ferent configuration. The simulation platform was MAT-
LAB (MathWorks, 2016). To implement the simulation 
procedure in MATLAB, program files were prepared with 
lines of code to create, train, validate and test the network 
as well as to generate the goodness of fit parameters of 
the data points using correlation coefficients (R2) and 
mean square error (MSE). In the script, the ‘While loop’ 
procedure was used. The criteria of > ‘0.99’ coefficient 
(R2) was set for the loop with twenty rounds of training 
for each configuration. The network with each configura-
tion was subjected to rounds of training until satisfactory 
performance was obtained. So, if after twenty rounds of 
training, the criteria were not satisfied, the training was 
stopped and the training of the next configuration began. 
The program divides the dataset randomly into 60%, 20% 
and 20% corresponding to the data for training, validation 
and testing, respectively. In the training process, epochs of 
200 was used as the stopping criterion. Epoch is the maxi-
mum number of times all of the training sets are presented 
to the network. Thus, the training stops if the maximum 
number of epochs is attained. The network trainings thus 
stopped when the number of iteration exceeded the stated 
number of epoch or other criteria is satisfied. At the end of 
the training, network object is generated with indication 
of the best validation performance. The result from the 
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training giving the best performance was then selected for 
each configuration, for comparisons and selection. 

2.2 Data Sources and Processing

The data for this work were obtained from the car-
bonation data contained in the works [1,7]. The work is an 
experimental investigation of fundamental factors influ-
encing mineral carbonation, using detailed kinetics of the  
process [1]. In the work, overall, 17 variables were extract-
ed with a total of 4428 data points, but the focus of this 
study is to understand the roles of divalent cations (calci-
um, magnesium and iron). The variables and the summary 
of their statistical variation are shown in Table 1. 

2.3 ANN Model Performance Criteria

The criteria used to evaluate the performance of differ-
ent ANN model configurations listed and explained below. 
Equations (1) and (2) are mathematical representations of 
detailed statistical analyses used to evaluate the perfor-

mances of various ANN configurations that were trained 
in this work. 
Mean squared errors (MSE)

MSE computes the average of the squares of the errors 
between the observed value (Sobs) and the estimated value (Scal). 

 (1)

where, N = total number of data points predicted, Sobs 
= observed value of relative permittivity, and Scal = 
calculated value of relative permittivity, .

2.4 Coefficient of Correlation (R2) 

The mathematical representation of coefficient of 
correlation is expressed in Equation (2).
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where, Ypred is the network prediction value, Ymeasured 
is the experimental response value and N is the total num-
ber of reading in the data points.

Table 1. Descriptive statistics of the input and output variables used in the machine learning

 Variables
Stirrer 
speed 

(RPM)

PCO2 
(bar)

Solid 
(%)

Time, 
t (hr)

T
(oC)

NaCl 
(%)

NaHCO3 
(%)

Particle 
size 

(µm)

Mg 
(%)

Si 
(%)

Fe 
(%)

Al 
(%)

Cr 
(%)

Ni 
(%)

Mn 
(%)

Ca
(%)

pH
Carbonation 

Yield (%)

Minimum 300 1 0.1 0.50 80 0 0 12.5 1.32 14.05 5.41 0.09 0.67 0.27 0.08 0.11 7 0.58

Maximum 1500 38.6 0.3 27.01 200 2 2 75 27.44 34.97 62.95 2 0.8 0.5 1 15.24 12 79.38

Average 247 27.29 0.12 3.38 159.80 0.89 0.84 28.05 22.53 20.88 15.82 0.48 0.7 0.32 0.27 2.27 7.37 23.45

3. Results

The results of the above investigations are presented 
and discussed in the following subsections.
ANN Models

As stated earlier, different configurations of the ANN 
models were tested to effectively and efficiently predict 
the carbonation efficiency of mineral rocks based on the 
mineralogical and chemical compositions of the rock 
materials. This testing of different configurations is nec-
essary to ensure that the most reliable ANN structure is 
applied to learn the trends and relationships in the range 
of data used. The well-trained ANN model, having the 
best performance criteria, can then be used to predict the 
carbonation efficiency values applicable to the cases and 
conditions of interest. Therefore, this subsection presents 
the results of the training, validation and testing, as well 
as the performances of the different ANN model config-
urations. Out of all the configurations tested in this study, 

the comparisons of the coefficient of correlation (R2) and 
Mean Squared Error (MAE) show that the ANN model 
with ANN[17-4-1] has the best performance. This model 
has only 4 neurons in the single hidden layer. The proce-
dure followed in these comparisons was similar to the one 
described in the work [11]. 

In this work, discussion is limited to the best-perform-
ing configuration (ANN-[17-4-1]) to save space and time 
of the readers. The performances in training, validation 
and testing as well as the post-training regression for the 
best-performing ANN configuration is shown in Figures 
1 and 2. As shown in figure 1, the performance during 
the training shows gradual learning of the trend in the 
data and the effective prediction of the output, resulting 
in gradual reduction in error (MSE) as the epoch number 
increases. The validation process shows that the network 
has grabbed the relationship among the data and the 
output without tending to overfit. This culminated in the 
optimal error value of 8.73 × 10–3 at the 23rd epoch. 



34

Advances in Geological and Geotechnical Engineering Research | Volume 04 | Issue 02 | April 2022

`

Figure 1. Performance of the ANN[17-4-1] model during 
Training, Testing and Validation processes.

The effect of good training and learning is further 
reflected in the regression output of the network. This 
is shown Figure 2, where the correlation coefficient is 
greater than 99%. This points to the fact the network really 
learns and adapts the data well. Thus, the ANN[17-4-1] 
is suitable for predicting and forecasting the carbonation 
efficiency of mineral rocks based on the mineralogical and 
chemical compositions of the rock materials as well as 
the other experimental parameters. Other configurations 
perform less in terms of the criteria of evaluation (MSE 
and R2). Therefore, this well-trained network was used 
to predict the influences of different parameters on the 
carbonation efficiency. 

Figure 2. Regression analysis of the predicted and 
targeted outputs

Carbonation Efficiency 
Figure 3 shows the prediction of the experimental 

outputs by the best-performing ANN configuration 
(ANN[17-4-1]). The figure shows good matches of the 

original experimental outputs (carbonation efficiencies) 
at most of the points. In fact, in most of the points, 
the predicted outputs wholly overlayed the original 
experimental outputs. In the remaining points, it is 
visually evident that the ANN predictions provide over 
99% coverage of the original experimental output values. 
This corresponds to the correlation coefficient of above 
0.99, shown in Figure 2. Thus, the network model used in 
this work is a highly efficient one to predict the output of 
carbonation process. As stated earlier, this study will be 
among the first set of publications, in the open literature, 
to utilize the concept of machine learning to predict and 
forecast the carbonation efficiency of rock materials based 
on the material contents and experimental conditions.

Figure 3. Prediction of the experimental efficiency data 
by the ANN

Effects of Calcium 
Figure 4 shows the pattern of carbonation efficiency 

with changing percentages of calcium in the mineral. 
Largely, the percent of calcium correlates positively with 
the carbonation efficiency. Maximum effect of calcium 
was found to be 344% rise in carbonation efficiency at 
10% increase in the percentage of calcium. This occurs 
at data count of 222 in Figure 4. Further increase in the 
amount of calcium to 20% and 30% reduces the effect 
on carbonation to 318% and 286%, respectively. Similar 
behaviour was noticed at the data count of 237, where the 
maximum effect of calcium on efficiency was found to be 
248% at 10% increase in calcium amount. This reduces to 
246% and 243% upon further increase in calcium amount. 

The above goes to show that there is optimum level of 
increase in the calcium amount to yield increased carbon-
ation efficiency. Though, further increase in the calcium 
also yielded higher efficiency, with reference to the orig-
inal level of the calcium in the mineral, but the marginal 
increase continues to decrease with higher % of calcium. 

Li et al. [12] emphasized that the release of calcium or 
magnesium from the silicate minerals will serve a great 
effect on carbonation yield. This idea emanated from the 
natural carbonation process which involves the weather-
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ing of magnesium, calcium and iron oxide-based silicate 
minerals, which then transforms atmospheric CO2 into 
carbonate minerals [13]. The abundance of Mg/Ca-silicates 
on Earth offers enormous capacity for sequestering CO2 

[14]. 
Thus, calcium component of the minerals has great and 
positive influence on the efficiency of the carbonation. 

Figure 4. Carbonation efficiency with change in %  
of calcium.

Effect of iron 
The presence of iron bears strong positive correlation 

with carbonation efficiency in most of the cases consid-
ered in this study. This is shown in Figure 5. Also, there is 
consistent increase in the efficiency as the iron content of 
the mineral increases. The highest predicted performance 
was recorded as 1541% at 30% increase in iron content. 
This has exceeded the performance of all other mineral 
contents. At 10% and 20% rises in calcium content, 526% 
and 1039% changes in efficiency were recorded, respec-
tively. This occurred at data count 217 in Figure 5. What 
can be inferred from the results are the complex interplay 
of fractional composition of the mineral contents. For ex-
ample at data count 221 in Figure 5, where conditions are 
similar to that at the count 217, the highest performance 
recorded was 674% at 30% rise in iron content. Upon 
close inspection, the discrepancy was attributed to the 
relatively higher level of magnesium in the former (data 
count 217). This seems to reveal the complex interrela-
tionship between the fractional composition of mineral 
content and carbonation efficiency. Ramli et al. [7] found 
that iron mining waste was influential in determining car-
bonation efficiency. 
Effect of magnesium 

Figure 6 shows the effects of quantitative changes in 
magnesium on the carbonation efficiency. It can be ob-
served that the efficiency drops slightly as the magnesium 
content increases. The reason for this is not obvious. This 
is unlike the cases with iron and calcium, where the effi-
ciency rises with an increase in their quantities. For exam-
ple, at data count 15, the carbonation efficiency decreases 
from the original efficiency of 72% to 65%, 55% and 

51% for 10%, 20% and 30% rises in magnesium quantity, 
respectively. Similarly, it was observed at data count 115, 
original efficiency at 36.9% falls to 35%, 29% and 22% 
for 10%, 20% and 30% rises in magnesium quantity, re-
spectively. Also, at data count 200, original efficiency at 
4% falls to 2.34%, 2.32% and 2.31% for 10%, 20% and 
30% rises in magnesium quantity, respectively. This con-
sistent behaviour shows that there is a maximum amount 
expected of magnesium in carbonation minerals, unlike 
the iron and calcium. 

Figure 5. Carbonation efficiency with change in % of iron

Figure 6. Carbonation efficiency with change in %  
of magnesium

4. Conclusions
This work has successfully demonstrated the clarity 

of influences played by various divalent cations in the 
efficiency of mineral carbonation. By training different 
configurations of Artificial Neural Network (ANN) to 
understand the complex roles of mineral constituents in 
the carbonation process, statistical appraisal shows that 
ANN[17-4-1] possesses the best performance criteria. This 
best-performing network was now employed to study the 
roles of divalent cations (calcium, magnesium and iron) 
of rock minerals in the efficiency of mineral carbonation. 
It was found that carbonation efficiency largely increases 
as the quantity of calcium content increases. Averagely, 
there is approximately 5% rise in the original efficiency 
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for 10% increase in the quantity of calcium. This reduces 
to 3.4% and 1.6% rises over the original efficiency for 20 
and 30% increases in calcium content, respectively. Iron 
content of minerals offers clear positive correlation to the 
carbonation efficiency. From the global average, there is 
approximately 17% rise in the original efficiency for 10% 
increase in the quantity of iron. This changes to 29% and 
41% rises over the original efficiency for 20% and 30% 
increases in iron content, respectively. This goes to show 
iron as a great contributor to the mineral carbonation 
among other divalent cations. The influence of magnesium 
was found to be mainly negatively correlated to carbon-
ation, after exceeding an unknown threshold. The global 
average of the efficiency changes with magnesium content 
results in original efficiency rising by 2% at 10% quantity 
increase and then falls by 3% and 9% for 20% and 30% 
increase in magnesium quantity, respectively. The study 
shows that, unlike iron, there is optimum level of increase 
in the calcium and magnesium contents to yield increased 
carbonation efficiency, following which the marginal in-
crease in % of the chemicals continue to result in decrease 
of efficiency. 
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