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robust control of a robotic unicycle. An algorithm for entropy production 
computing and representation of their relationship with the Lyapunov func-
tion (a measure of stochastic robust stability) described.
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1. Introduction: Intelligent Mechatronics as 
an Implementation Background of a New 
Types of Nonlinear Mechanical Systems Mo-
tion 

The extraction of knowledge from a new movement 
types of real physical control objects is based on 
benchmarks mathematical models’ simulation. The 

robotic unicycle motion is one of such type of “benchmark 

movements” (benchmark model of nonlinear mechanics [1-

5]), described as nonlinear nonholonomic, global unstable 
dynamic system. Related research of such dynamic sys-
tems is interesting for nonlinear mechanics (to develop a 
new method of nonlinear effects research) and for modern 
control theory (to deve1op a new intelligent control algo-
rithms).

Modern methods and algorithms of intelligent control 
development
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The development of an algorithm and control system 
for robotic unicycle benchmark requires а new technology 
of unconventional computing - computational intelli-
gence toolkit. The physical feature of robotic-unicycle is 
that the real unicycle bike’s control is realized by skillful 
human being operator only. This leads to the studying of 
the robotic unicycle as a biomechanical system includes 
new approaches to the control system, such as intuition, 
instinct and emotions inherent to the human-operator (rid-
er) and allowing to study the possibility of cognitive con-
trol by including the “human factor” in the control loop. 
The control of the robotic unicycle motion is based on 
the coordination of the complex movement components 
(pedaling and movement of the rider’s torso). Changing 
the components coordination type generates new types of 
movement (rectilinear movement, slalom, dance, jump-
ing, etc.). From nonlinear mechanics view point it is 3D 
synergetic effects of energy transfer from one generalized 
coordinate to others apply nonlinear relationships between 
generalized coordinates described by system of nonlinear 
equations. 

Related works. Previous studies conducted in the field 
of different unicycle robot mechanical models controlling 
(see, Table 1) considered the system only from the point 
of view of a mechanical model using classical control 
methods and / or a simplified, hybrid fuzzy proportion-
al-differential controller (FPD) with empirical tables of 
fuzzy decision making (production) rules (look - up Ta-
bles) [1-4]. However, this become an algorithmically intrac-
table problem for traditional control methods in the task 
solution of robust (stable) motion of the object and led to 
appearing of new approaches to solve this issue. 

The concept of this research and development of robot-
ic unicycle intelligent control system becomes the struc-
ture shown in Figure 1. 

To solve the problem of this object controlling a 
cyber-physical model called as “Conceptual Logical 
Structure of the Distributed Knowledge Representation 
(Information Levels) in the Artificial Life of the Robotic 
Unicycle” (Figure 1 a, b) as a biomechanical model of 
movement and control was developed and proposed.

The main research objective is studying the control 
problem of the robotic unicycle nonlinear biomechanical 
model, as well as the creation and “training” of a control 
system by means of available soft computing methods and 
algorithms. 

To assess the quality of control, a new physical princi-
ple: the minimum entropy production rate in the object’s 
movement and in the control system [2-5,7-13]. The physical 
measure of entropy production rate is applied as a fitness 
function in the genetic algorithm (GA). 

Table. 1 Models of unicycle robot

Schoonwinkel model 1987[1]

D.W. Vos model
1992 [2]

Yamafuji et all model
1995 [3-5]

DOI: https://doi.org/10.30564/aia.v2i1.1556
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Kim et all model
2010 [18]

Murata Seiko Girl model 2011 [15]

Eric Wieser model
2017 [16]

J.F. De Vries model 2018 [17]

Shen J. model [27]

Figure 1(a). Conceptual Logical Structure of Distributed 
Knowledge Representation (on Information Levels) in 

Artificial Life of the Robotic Unicycle

DOI: https://doi.org/10.30564/aia.v2i1.1556
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Figure 1(b). The conceptual scheme of the Robotic Uni-
cycle R&D

This approach ensures the global stability of the dy-
namic control object and robustness it’s of the control sys-
tem. Based on this approach the “Self-organizing structure 
of an artificial intelligence (AI), robust control system de-
sign with a new physical measure of control quality” (see 
below Figure 3) with a new type of intelligent feedback 
based on the principles of computational intelligence, as 
well as “Fuzzy Simulation structure of an intelligent con-
trol system design with soft computing algorithms ”(see 
Figure 5 below) has been developed. In previous studies, 
the problem of external and internal excitations on the 
mechanical and control system was not considered, see [1-4]. 
As a result, the global dynamic stability in object’s control 
was not achieved. 

In this article the modelling and optimization of intelli-
gent control system with stochastic external / internal ex-
citations simulation in the mechanical and control systems 
(floor roughness’s, mechanical vibrations, zero sensors 
drift etc.) using the structure of the forming filters [5] is 
represented. The results of the simulation and experiment 
confirming the efficiency of the model robotic unicycle 
control system.

2. Problem Statement and Research Pur-
pose: Creation of the Robotic Unicycle 
Mathematical Model with Essentially Non-
linear Intersection between Generalized Co-
ordinates

As mentioned above, the objective of this research is 
development the intelligent control system for non-holo-
nomic, essentially nonlinear, global spatially unstable with 
high amount of linking constraints model of the robotic 
unicycle. For this purpose, a new unicycle mathematical 
model was created for the “Real” unicycle’s coordinate 
system (see, Figure 2).

Figure 2. Coordinates description of the robotic unicycle 
model

For this coordinate system model derived the following 
explanations for basic and generalized coordinates, gener-
alized velocities, accelerations:

Elemental Coordinates -qj (t)=[x0,y0,α,γ,β,θw,Ψ,θ1, 
θ2,θ3,θ4,η]; where j = 1,…,12, Ψ(t)=θw(t)+ψ(const), 
ψ(const) - initial position of pedals Figure 2. (link 5,6). 
Hereinafter, the indices (i, j) denotes the serial numbers 
of elements in the corresponding vectors, matrices, and in 
the system equations

The equation of non-holonomic constraints in case of 
unslipping rolling between wheel and ground: 

dx t d w t dy t d w t
dt dt dt dt
0 0( )

= ⋅ ⋅ = ⋅ ⋅Rw t Rw t
θ θ( )

cos( ( ));  sin( ( ))α α
( ) ( )

 (1.1)

where Rw - wheel radius, 
d w tθ

dt
( )  - velocity of wheel 

rotation, )(tα - yaw angle. The coordinates x0, y0 are 
eliminated by substituting of Eq. (1.1) to kinematic La-
grangean part.

Generalized Coordinates - 
q t wj ( ) [ , , , , 1, 2, 3, 4, ]= α γ β θ θ θ θ θ η , j = 1,…,9. 
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In Figure 2 notation: α - yaw angle; γ - roll angle; β -
pitch angle; C.M. - center of mass; L 1,…,6 - links 1-6; θ1,
…,4 - links rotation angles; Ψ - initial position of pedals
and the current angle of pedal rotation (link 5,6) is includ-
ed in equations as summa - Ψ(t)=θw(t)+ψ(const).

Thus, Lagrangian solving including represented above
equations of nonholonomic/holonomic constraints and
external forces of stochastic excitations, gives the follow-
ing generalized stochastic equation of the robotic unicycle
system motion with control:








A q Mc q q t Bc q q q t Gc q Dc q c c t b

ME q q t C q t BT q q q t G q D q a

i n n i j i j j i i i i, , ,(

i j i i i i j j i i, ,

)

( ) ( ) ( , ) ( ) ( ( , ) ( ) ( ) ( ))          ( ),

⋅ = ⋅ + ⋅ + + − −λ τ ξ

⋅ = + + − ⋅ + +
¨ T

j τ λ ξ

(

T T T T T T

)
¨ T

j ( ) ( ,  ,  ) T T T T T( )

  

( ) ( ) ( )( )

 (1.2)

where - i,j=1..9; vector of generalized accelerations 

q j ( ) [ , , , , 1, 2, 3, 4, ]t a=  γ β θ θ θ θ θ η 

     w ; vector of general-

ized velocities q t w j ( ) [ , , , , 1, 2, 3, 4, ]= α γ β θ θ θ θ θ η  

      . In the 
system of equations Eq (1.2), equation (a) is the dynami-
cal equation of motion for the whole unicycle model with 
stochastic excitations, and equation (b) is the description 
of Lagrangian multipliers λn, where n=1…4. Matrices, 
vectors and another terms of equations (1.2) described in 
detail in the following sections of this article.

Stochastic excitation appears in case of ξc ti ( )  & ξi ( )t  
≠ 0 and described via differential equation of Forming 
Filter as Gaussian (as in our case) random process with 

autocorrelation function R( ) exp( )τ σ α τξ ξ ξ ξ
' 2 '= ⋅ − ⋅ . This 

disturbance is included into equation of motion for some 
generalized coordinates, and it is modelling possible 
roughness of flow, jamming in closed-links mechanism, 
and inaccuracy of angular acceleration measuring (sensors 
zero drift). 

Under these conditions obtained stochastic equation 
of motion with parametric excitations. All of this gives 
a possibility to simulate behavior of dynamic controlled 
system more realistically and to determine real parameters 
of intelligent controllers for error estimation and control 
robustness. Stochastic modelling via Forming Filters is 
described below in [5]. 

3. Stability Estimation of Robotic Unicycle 
System

For definition of (un)stability is used a Salvadory 
theorem about equilibrium of mechanical systems 
with dissipative forces of a Qi(q,q4 ) type along with 
full energy of system E(q,q4 ) as Lyapunov function 
V q q E q q T q q U q( , ) ( , ) ( , ) ( )  ≡ = +  ;  w h e r e  T q q( , )  i s 

kinetic energy of system, U q( )  - potential energy of sys-
tem. Under Lyapunov’s theorem conditions, if the function 
V(q,q4 ) is: 1) positively determined about any q,q4  and have 
0 at (q,q4 )=0, i.e. V q q a q q( , ) ( , ) ≥  & V (0) 0= , where a is 
a some continuous, strictly increasing  function, satisfying 
to a condition a(0)=0; 2) Derivative of function V by time 
t is negative, i.e. V q q( , ) 0 ≤ ; when origin is stable [6]: 

Let’s considering conditions of Salvadori’s theorem 
that determine the dynamical systems stability. 

Assume iff: 
(1) U(q) have minimum at q=0;
(1a) U(q) don’t have minimum at q=0;
(2) equilibrium statement q=0 is insulated;
(3) absolute dissipation ( | ) ( )Q q a q ≤ −  , where a is a 

strictly positive definite function.
Then with conditions 1) equilibrium state (q,q4 ) = 0 is 

stable; in the case 2), with condition 1a), equilibrium state 
(q,q4 ) = 0 - unstable. 

Basing on the both theorems lets define a stability con-
dition of robotic unicycle system. 

The equation for expression of robotic unicycle poten-
tial energy for qj = (0,0,0,0,θ1,θ2,θ3,θ4, 0) has following 
form:

sin( 2))) (cos( 3) cos( 4)) 6]

∑ ∑
n n

U g Rw e e

θ θ θ

n n(0) [ (2 1 2 (sin( 1)= ⋅ ⋅ Μ +Μ ⋅ ⋅ − ⋅ +

+ ∆ ⋅Μ ⋅ + +Μ ⋅z e5 7

3 θ
 (1.3)

where: coordinates - θ θ θ θ1, 2, 3, 4  cannot be equal 
to 0 at γ β θ, , w  =0 by mechanical constraints of closed-
links mechanism; Mi - masses of robotic unicycle parts; 
Rw, e1,e2,e6, z∆  - sizes in Figure 2. From Eq. (1.3) fol-
lows, that U(0) has maximum value in the equilibrium 
statement. The Eq. (1.3) satisfies to a condition 1a) of 
Salvadory theorem, that describes instability of robotic 
unicycle system at equilibrium statement. This enables 
to assert about global instability of the robotic unicycle 
autonomous dynamic system. However, as discussed in [6], 
in case the U(0) has maximum value it might happen that 
equilibrium will be stable owing to occurrence of external 
forces,  such as gyroscopic or similar that in our case is 
controlled torques. 

This research proclaims that it is possible to create such 
intelligent control system, which can continuously stabi-
lize dynamic motion of nonlinear robotic unicycle and the 
simulation results are shown below.

4. Methods for Task Solving - Conceptual 
Model of Biomechanical Robotic Unicycle 
Control System

To provide computational intelligence methods that can 

DOI: https://doi.org/10.30564/aia.v2i1.1556
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coordinating the complex motion components, it is nec-
essary to use qualitatively new control algorithms that 
can operate with linguistic variables [8]. Soft computing 
methods fully satisfy to requirements, and that is deter-
mines their use. Based on the physical and sophisticated 
description of the biomechanical model, and using soft 
computing methods, the following structure of modeling 
the intelligent control system is represented.

Biomechanical Model of Intelligent Control System. 
The human riding control of the unicycle as logic-dynam-
ic hierarchical process may be formed by: 

(1) mechanical dynamic system “human-rider - unicy-
cle”; 

(2) decision-making process of unicycle intelligent 
control with different levels of “riding skills”; 

(3) logical behavior for human body motorists (legs, 
hands and torso coordination) based on intuition, instinct, 
and emotion mechanisms; 

(4) distributed information system for cooperative co-
ordinating of sub-systems in biomechanical model [8]. 

In accordance with this representation of dynamic con-
trol process a hierarchical logic structure of distributed 
knowledge representation of the robotic unicycle artificial 
life is shown in Figure 1. For description of artificial life 
of robotic unicycle, the methods of qualitative physics for 
internal world representation based on mathematical mod-
el of unicycle motion used.

Logic structure of biomechanical control system for de-
scription a human riding of unicycle includes four levels: 

(1) distributed information levels with sub-levels; 
(2) logical system; 
(3) support decision-making system; 
(4) dynamic mechanical system.
Further the proposals of this structure are described 

in details. Distributed information levels include four 
sub-levels: 

(1) physical level and logic of virtual reality; 
(2) behavior and coordination level; 
(3) intelligent control levels with two sub-levels; 
(4) executive biomechanical level. 
Intersections between the horizontal lines of distributed 

information levels and vertical lines of logical system, 
support decision-making system, and dynamic system (of 
unicycle motion and a human-rider behavior as biome-
chanical control model) realize the particular for human 
unicycle riding models with different skill levels of smart 
control tools using. Let’s consider here this approach with 
examples.

Example 1: Physical and logical level of virtual real-
ity. The intersection of the first horizontal level (Physical 

and logical level of virtual reality) with the first vertical 
level (Logical system) gives the structure of the human 
learning process to ride (control) a unicycle. The intersec-
tion with the second vertical level (support decision mak-
ing system) corresponds to the level of the central nervous 
system (CNS) as a biological control system. The inter-
section with the third level (Dynamic (mechanical) sys-
tem) is introduced mechanical model of the of a unicycle 
movement as a dynamic system. The logical sum of these 
sublevels implements the physical level of the unicycle 
movement description and the physical interpretation of 
the experimental data (attempts). The mathematical back-
ground for describing the learning process is the quantum 
fuzzy logic. The functions of the CNS are realized as the 
knowledge base (KB) domain of possible stable states. 
But, to create a control system of such a high intelligent 
level is not currently possible.

Example 2: Behavior and coordination level. This 
structure includes the mechanisms of instinct, intuition 
and emotion. The mechanism of instinct is described in 
the logical structure as a local coordinator with fuzzy 
rules and corresponds to a control structure with active 
and passive adaptation based on a fuzzy neural network 
(FNN). The mechanism of intuition is represented as a 
global coordinator and realized in the control process as 
a decision-making process based on a genetic algorithm 
(GA). The mechanism of emotions is described basing on 
the information from motion sensors and represented in 
the form of lookup tables with different semantic expres-
sion of the linguistic description of the desired dynamic 
motion behavior (as examples, “smoothly”, “quickly” and 
so on). Thus, the intersection of two distributed informa-
tion levels with logical systems is realizing the artificial 
brain unit for the process of unicycle control system 
self-organization.

Example 3: The Intelligent control level - an artificial 
intelligent control system with a distributed knowledge 
representation, includes “will” and “mind” (desires and 
opportunities) concepts, just like a human being [9,10]. For 
the mechanisms of instinct and emotion, new lookup 
tables are determined using an FNN. The mechanism of 
intuition is realized on the GA basis and directs the two 
fuzzy controllers’ actions. Thus, the fuzzy simulation 
based on mathematical GA and FNN tools implements the 
soft computing algorithm in the robot’s intelligent control 
system. 

From a qualitative physical description and movement 
simulation the domain of possible virtual stable states de-
scribed by a strange attractor is obtained, as it was shown 
in [3,4]. This suggests that the human postural control sys-
tem is a highly organized complex system and the position 
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of the human body changes (sways) stochastically. This 
fully corresponds to the results described in [11]. 

Example 4: Executive biomechanical level - the phys-
ical process of the robotic unicycle system realization. In 
this case, the vestibular system as a logical control system 
is realized by the balancing turntable (torso, shoulder gir-
dle and arms), and the neuro-muscular system is formed 
by the closed-links mechanism of the legs. 

Thus, the dynamic process of human unicycle riding 
control with different intelligent behavior levels should be 
described as the intersection of logical systems with dis-
tributed information levels.

The intelligent robust control system structuring. The 
development of complex dynamic systems robust motion 
control has two ways of research: 1) the study of stable 
motion processes; and 2) the study of unstable motion 
processes of complex dynamic systems. 

As mentioned above, our attention has been focused on 
the study of the robotic unicycle as a dynamic, global-spa-
tially unstable controlled object. Such a global-spatially 
unstable dynamic object requires a new intelligent robust 
control algorithm based on knowledge description of an 
essentially nonlinear, unstable dynamic system move-
ments [3,8]. The structure of the intelligent robust control 
algorithm in the conceptual form for the entire class of 
unstable dynamic control objects, was described in [2-4,8], 
here we apply it to the problem of controlling the robotic 
unicycle.

The control structure with a new intelligent feedback 
type is represented in Figure 3. It is based on the scheme 
of a conventional control system with linear feedback 
P(I)D, intelligent soft computing tools (fuzzy set theory, 
fuzzy neural networks (FNN), genetic algorithms (GA)); 
nonlinear model of the control object; entropy production 
rate calculating; stochastic simulation of random external/
internal excitations.

In the structure Figure 3 the following designations 
are used: GA - Genetic Algorithm; f - Fitness Function of 
GA; S- Entropy of System; Sc - Entropy of Controller; Si 
- Entropy of Controlled Plant; - Error; u*- Optimal Con-
trol Signal; m(t) - Disturbances (random external/internal 
excitations); FC - Fuzzy Controller; FNN - Fuzzy Neural 
Network; FLCS - Fuzzy Logic Classifier System; SSCQ 
- Simulation System of Control Quality; K - Global Op-
timum Solution of Coefficient Gain Schedule (Teaching 
Signal); LPTR - Look-up Table of Fuzzy Rules; CGS - 
Coefficient Gain Schedule (in case of 2 PD controllers -  
K = (k1, k2, k3, k4)).

The control self-organization in this system, at the first 
stage, is provided by optimizing the control parameters of 
the P(I)D controller by selecting the best solutions with a 

genetic algorithm, in which the selection criterion is the 
best fitted solution, calculated using the fines function. 
To determine solution fitness’s a new physical measure of 
control quality is used - a entropy production minimum 
rate. This measure is the difference between entropy pro-
duction by the control object itself and the control system 
included in it. This allows you to adapt the parameters of 
the linear control system to a nonlinear control object [7,12]. 

The next adaptation stage is training the control sys-
tem to ensure its robustness. This step is based on a fuzzy 
logic classifier that defines fuzzy rules for logical relation-
ships of linear controller parameters. The classifier is the 
FNN for which the training signal is optimized control 
parameters obtained from the genetic algorithm output. 
This stage generates fuzzy lookup tables, adapted control 
parameters of the low-level controller P(I)D. 

In this approach, solving the problem of a nonlinear 
object controlling, the criterion of the control quality (con-
trollability) is the entropy production function, which is 
directly related to the Lyapunov function i.e. to a dynamic 
system stability, as it shown in [7,12,13]. The interrelation 
between these functions in an intelligent control system 
ensures its robustness, as shown in Figure 4. Further, the 
obtained lookup tables are used by a fuzzy controller (FC) 
to control the linear controller parameters.

Figure 3. Self-organizing structure of an artificial intelli-
gent (AI), robust control system design with a new physi-

cal measure of control quality

Description:
1. GA - Genetic Algorithm;
2. f - Fitness Function of 
GA;
3. S- Entropy of System;
4. Sc - Entropy of Control-
ler;
5. Si - Entropy of Con-
trolled Plant;
6. e - Error;
7. u*- Optimal Control 
Signal;
8. m(t) - Disturbance;
9. FC - Fuzzy Controller;

10. FNN - Fuzzy Neural Network;
11. FLCS - Fuzzy Logic Classifier Sys-
tem;
12. SSCQ - Simulation System of Con-
trol Quality;
13. K - Global Optimum Solution of 
Coefficient Gain Schedule (Teaching 
Signal);
14. LPTR - Look-up Table of Fuzzy 
Rules;
15. CGS - Coefficient Gain Schedule 
K=(k1,k2,k3,k4).
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Figure 4. Interrelation structure between a Stability, Ro-
bustness and Controllability of the system

Based on the intelligent control structure and interrela-
tionship in Figure 4, the Fuzzy Simulation structure of an 
intelligent control system design was developed in Figure 5.

Simulation is decomposed into two main stages: Off-
Line and On-Line. At the first stage a controlled object 
mathematical model is creating and the thermodynamic 
equations of its states are founding to calculate the entro-
py. Further, the equations for entropy production forming 
the GA fitness function. GA in computer stochastic sim-
ulation mode optimizes the P(I)D controller parameters. 
The next step is the training of the control system based 
on the optimized controller parameters obtained from the 
GA and obtaining lookup tables (FC Knowledge Base) 
using the FNN. 

In On-Line mode basing on the obtained lookup tables 
the P(I)D controller parameters of the robotic unicycle are 
changes by a fuzzy controller in real time. The structure 
of the robot control system is described below. 

Figure 5. Fuzzy Simulation structure of an intelligent 
control system design

5. Mathematical System Modeling Using Soft 
Computing Methods

The simulation basis is a mathematical description of the 
control object motion represented in (1.2). Let us dwell on 
the equations (1.2) description.

For the mathematical simulation of a robotic unicycle 
movement the following parameters of the model (1.2) are 
adopted and graphically represented in Figure 2: where - i,j = 

1 ... 9; q t wj ( ) [ , , , , 1, 2, 3, 4, ]= α γ β θ θ θ θ θ η  

       - vector of gen-

eralized accelerations;  
- vector of generalized velocities; In the system of equa-
tions Eq(1.2), equation (a) is the dynamic equation of mo-
tion for the whole unicycle model, and equation (b) is the 
description of Lagrangian multipliers λn, where n = 1 ... 4.

In Eq.(1.2,a), MEi,j(q) is a 9×9 block matrix that 
consists of inertial acceleration’s terms M(q), derived 
from Lagrange equations, and geometrical accelera-
tion’s terms derived from equations of closed-links 
mechanism constraints E(q); BTi,j(q,q4 ) is a 9×9 block 
matrix that consists of Coriolis and centrifugal B(q,q4 ) 
& T(q,q4 ) terms, derived from Lagrange equations, and 
equations of closed-links mechanism constraints, respec-
tively; Gi(q) is a 9-dimensional vector of gravity terms 
G q G q G q G qi ( ) [0, ( ), ( ), ( ),0,0,0,0,0]= 2 3 4 ;  Di(q ,q4 )  is  a 
9-dimensional vector of viscous friction  forces terms 
D q D q D q D q D q D qi ( ) [ ( ), ( ), ( ), ( ),0,0,0,0, ( )]     = 1 2 3 4 9 ; τ i  is a 
9-dimensional vector of torque τ τi = [0,0,0,0,0,0,0,0, ]( )3η ;  
C qi ( ,λ)  is 9-dimensional vector of Lagrangian multi-
pliers with respected coefficients of constraint equations 
C q C Ci w( , ) [0,0, , ,0,0,0,0,0]λ = ( )1 ( )2β θ ; ξi ( )t  is 9-dimen-
sional vector of given stochastic excitation. 
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In Eq.(2,b), Mci,j(q) is a 9×9 matrix of inertial accelera-
tion’s terms M(q) derived from Lagrange equations; Bci,j(q,q4) 
is a 9×9 matrix of Coriolis and centrifugal B(q,q4 ) terms, 
derived from Lagrange equations; Gci(q) is a 9-dimension-
al vector Gc q G q G q G q G qi ( ) [0,0,0,0, ( ), ( ), ( ), ( ),0]= 5 6 7 8   
of gravity terms; Dci(q,q4 ) is a 9-dimensional vector 
Dc q D q D q D q D qi ( ) [0,0,0,0, ( ), ( ), ( ), ( ),0]    = 5 6 7 8  o f  v i s -
cous friction forces terms; icτ  is a 9-dimensional vector 
of torque τ τ τci = [0,0,0,0,0,0, , ,0]( 3)1 ( 4)2θ θ ;  )(tciξ  is 
given stochastic excitation; Ai,n(q) is a 9×4 matrix of 
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geometrical terms derived from constraints equations of 
closed-links mechanism, correspond to motion equation 
by i index; λn- 4-dimensional vector of Lagrangian multi-
pliers:

Mc q

Bc q qi j

i j

,

,

( , )   ;

( )   ;
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=
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The equations of the Robotic Unicycle system’s con-
trolled torques. In the case of PD controller for the Links 
mechanism, the controlled torque is given as: 

τ τ β β( 3)1 ( 4)2θ θ= − = − ⋅ − ⋅kp T t kd T t1( ) ( ) 1( ) ( )  (4.1)

and for the Rotor mechanism - as: 

τ γ γ( )3η = ⋅ + ⋅kp T t kd T t2( ) ( ) 2( ) ( )  (4.2)

GA genera tes  P( I )D cont ro l le r ’s  parameters 
kp T kp T kd T kd T1( ), 2( ), 1( ), 2( ) , selecting them basing 
on the results of the fitness function calculations, each 
sampling time T = 0.05sec. This sampling time is defined 
from real controller scheme of Robotic Unicycle. 

Information-thermodynamic criterion of the con-
trol qualities distribution. The thermodynamic ratio of 
the robust intelligent control quality to the optimiza-
tion criterion, used in the quantum algorithm (QA) of a 
knowledge bases (KB) self-organization [8], are shown 
in Table 2. In Table 2 the following notations are intro-
duced: V- Lyapunov function; SO, SC entropy produc-

tion in the Control Object & Controller, respectively; 

V q S S S S q q u t ; ; , ,= + = − =
1 1
2 2∑

i=

n

1
i O C i i
2 2

 φ ( ) -  the  CO 

equation of motion; qi - generalized coordinates; u - the 
desired control.

In the Table. 2, the equation of a dynamic system con-
trol qualities distribution connects in an analytical form, 
on the basis of the phenomenological thermodynamics en-
tropy concept, such a qualitative notions of control theory 
as - stability, controllability and robustness. As a result, 
the necessary distribution between the stability, controlla-
bility and robustness levels allows achieving the control 
goals in emergency situations with a minimum of useful 
resource consumption by using as a GA’s fitness function 
the criterion of minimum generalized entropy production. 
The thermodynamic definition of the S and information H 
entropies are interrelated by the von Neumann relation in 

the form: S kH k p p= = − ∑
i

i iln , where k ≈ ×1.38 10−23  J/

K is the Boltzmann constant. As a result (after substitution 
of this ratio), obtained an equation that also relates stabil-
ity, controllability and robustness, but on the basis of the 
Shannon’s information entropy, which allows to determine 
the control to guaranteed achievement of the control goal 
in emergency situations with the requirement of a mini-
mum information quantity about the external environment 
and CO states.

As mentioned above, to assess the quality of control, a 
new physical principle: the minimum entropy production 
rate in the object’s movement and in the control system 
[4-13]. The physical measure of entropy production rate 
is applied as a fitness function in the genetic algorithm 
(GA). 

Table 2. Thermodynamic ratio of a robust intelligent con-
trol quality distribution

Therefore, these ratios are forming an equations sys-
tem of control defining which guarantees the control goal 
achievement in emergency situations with a minimum 
useful resource consumption and the minimum required 
initial information [8-13].

Information and thermodynamic distribution of 
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control quality rates. Assume that the control ob-
ject is described in general form by the equation 

q q t S t ui = ϕ ( , , ,( ) ) , where the generalized coordinate qi 

describes the control object movement, u is the desired 

control and S t S t S t( ) = −O C( ) ( )  is the generalized en-
tropy of the system represented as the difference between 

the control object’s entropy production S tO ( )  and the 

controller’s entropy production . S tC ( )  Consider the fol-
lowing equation:

Stability


dV
dt

= ⋅ + − ⋅ − ≤∑
 

i=

n

1

q q t S t u S S S Si ϕ

Controllability

( , , , 0(


) ) (


O C O C

Robustness

) (   )

 (4.3)

Equation (4.3) in analytical form interrelates such qual-
itative notations of control theory as stability V (Lyapunov 
function), controllability and robustness basing on the 
concept of phenomenological thermodynamics entropy 
[8,9,19-22]. 

This approach allows, as noted earlier, to find the nec-
essary distribution between the levels of stability, control-
lability and robustness, which permitting to achieve the 
control goal in emergency situations with a minimum use-
ful resource consumption by using the minimum general-
ized entropy production as a fitness function in the genetic 
algorithm, which is included in the right part Eq. (4.3). 

Consider now the (4.3) regarding to the interrelation 
of thermodynamic entropy to Shannon information en-
tropy. The thermodynamic definition of S and H entro-
pies are interrelated by the von Neumann, relation in the: 
S kH k p p= = − ∑

i
i iln , where k ≈ ×1.38 10−23  J/K is the 

Boltzmann constant. Substitution the Shannon informa-
tion entropy - H instead of S t( )  in equation (4.3) give as 
a result: 

Stability


dV
dt

= ⋅ − + − ⋅ − ≤∑


i=

n

1


q q t k H H u k H H H Hi O C O C O Cϕ ( , , , 0

Controllability

( )


) (


Robustness

) (


  )

 (4.4)

Thus, equation (4.4) also interrelates stability, con-
trollability and robustness, but already on the Shannon’s 
information entropy basis, which also allows defining 
controlling approaches for guaranteed achievement of the 
control goal in emergency situations with the requirements 
of a minimum information about the external environment 
and the control object state. Consequently the (4.3) and 

(4.4) forming an equations system, which solution are de-
termining the controlling approaches that guarantees the 
achievement of the control goal in emergency situations 
with a minimum useful resource consumption and the 
minimum initial information requirements. 

6. The Cognitive Intelligent Control System 
Information-Thermodynamic Analysis

Result of equations (4.3) and (4.4) generalization is the 
following equations system:

+ − + ⋅ − + ≤

Stability


dV
dt

(


 

S S S S S S 0O Тc Cc O Тc Cc

= ⋅ − +

(

∑


i 1=

n

q φ q, t, k S S S ,ui O Тc Cc(

Robustness

)) (

Controllability

 

(

(

(



 ))

)) )

 (5.1)

+ − + ⋅ − + ≤

 Stability


dV
dt

(


H H H H H HO O Тc Cc

= ⋅ − +∑


i

(

=

n

1

q q t k H H H u

Тc Cc

i Oϕ ( , , ,

Robustness

))

(
Controllability

(  

(

(

Тc Cc





)

)

)

)

)

0
 (5.2)

where (S SТc Cc+ )  and (H HТc Cc+ )  means the total 
thermodynamic and information entropies of the Techni-
cal intelligent (Tc) and Cognitive (Cc) controllers, respec-
tively. 

From equation (5.1) follows that the robustness of the 
intelligent control system can be increased by the cogni-
tive regulator entropy producing, which reduces the useful 
resource consumption, and equation (5.2) shows that the 
negentropy of the cognitive controller reduces the mini-
mum requirements for the initial information to achieve 
robustness. Moreover, information based on knowledge in 
the cognitive controller’s KB allows to obtain an addition-
al resource for effective capacity, which is equivalent to 
the appearance of a targeted action on the control object to 
ensure the achievement of the control goal.

One of the key tasks of modern robotics is the devel-
opment of technologies for the cognitive interaction of 
robotic systems, which allow solving the tasks of intelli-
gent hierarchical control by redistributing knowledge and 
control functions, for example, traditional “master - slave” 
system. Modern approaches to solving this issue are based 
on the theory of multi-agent systems, theory of a swarm 
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artificial intelligence, and many others [8,9,23-25]. 
According to [24-26], in a multi-agent system there is a 

new synergetic information effect of knowledge bases 
self-organization and formation of an additional informa-
tion resource arising from the information and knowledge 
exchanges between active agents (swarm synergetic infor-
mation effect). Extraction of an additional resource in the 
form of quantum information, which hidden in classical 
states, is realized on the basis of quantum fuzzy inference, 
which in turn, is a new quantum search algorithm and a 
special case of a quantum self-organization algorithm.

Due to the synergistic effect, an additional information 
resource is created and the multi-agent system is able to 
solve complex dynamic tasks for the joint work imple-
mentation. The assigned task may not be performed by 
each element (agent) of the system individually in envi-
ronments variety without external control, monitoring or 
coordination, but the exchange of knowledge and infor-
mation allows to perform joint effective work to achieve 
the control goal in the conditions of initial information un-
certainty and limitations on the useful resource consump-
tion [14]. In particular, it is well known that for feedback 
control systems, the amount of recoverable useful work W 

satisfies the inequality W t k T Idt kTImax min c( ) = ≤∫
0

t


' , where 

k is the Boltzmann constant, T tmin ( )  is interpreted as the 
lowest achievable by the system temperature in time t un-

der feedback control, assuming T Tmin (0) = , and Ic deter-
mines the Shannon information quantity (entropy transfer) 
extracted by the system from the measurement process [23].

The synergetic effect physically means the self-orga-
nization of knowledge and creation of an additional in-
formation quantity that allows to the multi-agent system 
making the most useful work with a minimum useful 
resource consumption and with a minimum initial infor-
mation requirement, nondestructive the lower executive 
control system level [22-25]. Together with the informa-
tion-thermodynamic intelligent control law (optimal 
distribution of control qualities “stability -controllability 
- robustness”), an intelligent control system (ICS) for 
multi-agent systems is designed, which guarantees the 
achievement of the control goal in the conditions of initial 
information uncertainty and limited useful resource [14,19,25].

Let’s consider these statements in more detail on the 
basis of the interrelationship analysis between the infor-
mation quantity and extracted on its basis useful work and 
free energy. 

As noted above, if microscopic degrees of freedom 
are available to the Maxwell demon observer form, then 
the second thermodynamics law can be violated. Szilárd 

showed from the Maxwell demon model analysis that the 
work in the form - kT ln 2  is extracted from the thermo-
dynamic cycle. Moreover, it was shown that the extracted 
work Wext

S  from the system is determined by the informa-
tion quantity (or quantum-classical mutual information) 
I that determine the knowledge about the system during 
measurement. At the same time, a similar ratio in the form 
of a lower bound exists for the total measurement cost 
Wcost

M  and information erasing W F kTIext
S S≤ −∆ +  and 

W kTIcost
M ≥ , where ∆F S  determines the free energy of the 

system. Then it is easy to notice that the speed of the ex-
tracted work Wext   is limited by the value W kTI 

ext ≤ , i.e. 
it is limited by the speed of the extracted information. 

The proposed quantum algorithm model of ICS self-or-
ganization, based on the minimum information entropy 
principles (in the “intelligent” state of control signals) and 
on a generalized thermodynamic measure of entropy pro-
duction (in the system “control object + controller”). The 
main result of the self-organization process application is 
the acquisition of the robustness necessary level and the 
reproducible structure flexibility (adaptability). It is noted 
that the robustness property (by its physical nature) is an 
integral part of self-organization, and the required level of 
ICS robustness is achieved by fulfilling the minimum gen-
eralized entropy production principle, described above. 
The minimum entropy production principle in the CO 
and control system [14] acting as the physical principle of 
optimal functioning with minimal useful work consump-
tion and underlies the development of robust ICS. This 
statement is based on the fact that, for the general case of 
dynamic objects controlling, the optimal solution to the 
finite variational problem of the maximum useful work W 
determining is equivalent, according to [14], to the solution 
of the finite variational problem of finding the minimum 
entropy production S. Thus, the study of the conditions of 

the maximum functionality max
q ui ,
(W )  (where q ui ,  a CO’s 

generalized coordinates and the control signal respective-
ly) are equivalent, accordingly to [25], to study the asso-
ciated problem of the minimum entropy production, i.e. 
min

q ui ,
(S ) .Therefore, in the developed quantum algorithm 

model, the applied principle of minimum informational 
entropy guarantees the necessary condition for self-orga-
nization - the minimum of the required initial information 
in the learning signals; the thermodynamic criterion of a 
new measure the generalized entropy production mini-
mum provides a sufficient condition for self-organization 
- the control processes robustness with a minimum con-
sumption of a useful resource.

More significant is the fact that the averaged val-
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ue of the produced work by the dissipation forces - 
W
kT

diss = S P PKL F B( ) , i.e. the dissipation forces work is 

determined by the Kulbak-Leibler divergence for the 
probability distributions P PF B, . Note that the left part of 
this ratio represents the physically a thermal energy, and 
the right part determines a purely system’s information.

Information entropy is a measure of the information 
quantity about a system and the Kulbak-Leibler diver-
gence, as well as the Fisher’s information quantity de-
termination. The similar interrelation exists between the 
work produced by the dissipation forces and the Renyi 
divergence. 

Thus, substituting into (5.1) and (5.2) represented rela-
tionship between information - the extracted free energy 
and the work obtaining the conclusion noted above - the 
intelligent control systems robustness may increase by  
the cognitive controller entropy production, which reduces 
the useful resource consumption of the control object, and 
same time, the negentropy of cognitive control reduces  
the minimum initial information requirements to achieve 
robustness. Therefore, the extracted information, based 
on knowledge in the cognitive controller’s KB allows 
obtaining an additional resource for useful work, which 
is equivalent to appearance of a targeted action on the 
control object to guarantee the achievement of the control 
goal.

General mathematical simulation structure. The struc-
ture of Fuzzy Simulation structure of an intelligent control 
system design represented in Figure 5, and decomposed 
into two main stages: Off-Line and On-Line as mentioned 
earlier. 

In the Off-Line a controlled object mathematical model 
is creating and the thermodynamic equations of its states 
are founding to calculate the entropy which forming the 
GA’s fitness function and computer stochastic simulation 
with GA optimizes the P(I)D controller parameters.

In the next step GA randomly selects an optimized 
PD’s controller parameters in the all possible solutions do-
main, using the minimum entropy production in the intel-
ligent control system and in the complex nonlinear model 
dynamic behavior as a criterion for the solution suitability 
(fitness function). The fitness function of the GA is repre-
sented as:

Eval S S= − −min(( )( ))O C dS dS
dt dt

O P

 (5.3)

where dS
dt

C

 - is the control system’s entropy produc-

tion rate; dS
dt

O

 - is entropy production rate in the motion 

of the robotic unicycle (Object) with following condition: 
dS dS
dt dt

C O

> . Description of entropy production rate cal-

culation is presented in [8,9].
Thermodynamic equation of motion. The equations 

for calculation of the entropy production rate for intelli-
gent control system and dynamic motion of robotic Uni-
cycle are derived from approach as described in [8]. These 
equations are described in the following form: 

 
 

 
 
  

dS

dS
dt

dt

C

P

= ⋅ ⋅
 
 
 

M qi j=

0 1
( ) 0 −1  

 
 

B q q q t D qi j= ( , ) ( ) ( )  ⋅ +
τ

T T

d
T q t

T ( )

 (5.4)

where: i,j=1..9; Mi=j(q) is a 9×9 diagonal matrix of iner-
tial acceleration’s terms M(q) derived from Lagrange equa-
tions; Bi=j(q,q4 ) is a 9×9 diagonal matrix of Coriolis and 
centrifugal terms, derived from Lagrange equations; D(q4 ) 
is a 9-dimensional vector of viscous friction forces terms 
D q D q D q D q D q D q D q D q D q D qi ( ) [ ( ), ( ), ( ), ( ), ( ), ( ),  ( ), ( ), ( )]         = 1 2 3 4 5 6 7 8 9 ; 
τ d is a 9-dimensional vector of torque’s dissipative parts 
kdi ⋅[ , ]β γ  , τ τ τd = [0, , ,0,0,0,0,0,0]3 1,2  .

Following the Figure 5, the next step is the training 
of the control system based on the optimized controller 
parameters obtained from the GA and obtaining lookup 
tables (FC Knowledge Base) using the FNN. 

In On-Line mode basing on the obtained lookup tables 
the P(I)D controller parameters of the robotic unicycle are 
changes by a fuzzy controller in real time.

7. Mathematical Simulation and Experimen-
tal Results

Soft Computing Simulation structure in MathLab Sim-
ulink® system is shown in Scheme 1. It consists from fol-
lowing parts:

(1) Block of main equations;
(2) Block of random excitation;
(3) Blocks of equation’s coefficients;
(4) Blocks of Lagrangian multipliers calculation;
(5) Block of Intelligent control system based on Soft 

Computing - GA or FNN. 
In all simulation cases, the real parameters of the ro-

botic unicycle model were used see the Figure 6, and the 
corresponding stochastic effects: disturbing from the floor 
to the yaw rotation angle and jamming in the closed-links 
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mechanism. (see Figure 7).
The method of algebraic loops expulsion, described 

in detail in the patent [19], was applied to accelerate the 
simulation processes. This method allowed to accelerate 
the computer simulation process - integration is about 190 
times down with the difference in integration result less 
than 1%, as shown in Figure 8 and Figure 9.  

Simulation results discussion. In Figure 4 shown the 
comparison of three types of control approaches: 

(1) Conventional PD controller with fixed gain coef-
ficients - temporal mechanical and thermodynamic con-
trolled system behavior; 

(2) The GA with fitness function as minimum of entro-
py production rate for conventional PD controller. 

(3) The Fuzzy PD controller with lookup tables obtained 
after learning process by FNN with pattern from GA.

Such structure is the most applicable because of its 
flexibility, it has an opportunity to change only necessary 
separated blocks, such as control, main equations, exci-
tation etc., without changing the whole structure.

From presented results it is visible, that: (1) usage of 
the approach described above, with application of a min-
imum entropy production rate as fitness function in GA 
and learning process by FNN, is completely justified; (2) 
dynamic motion occurs more smoothly even the control 
signal’s discretization time is use in PD-GA and Fuzzy PD 
controllers with sampling time = 0.05 sec. 

Figure 6. Robotic Unicycle model

Figure 7. Simulated stochastic excitations - from a floor 
roughness’s and jamming in closed-links mechanisms

Figure 8. The accelerated and standard model’s an in-
tegrating accuracy example (with & without algebraic 

loops)
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Figure 9. Integration time comparison for accelerated & 
standard models

Entropy production rate for the Pitch angle after the 
learning by FNN is decreased to 10 times. For the Yaw 
and Roll angles Entropy production rate is 10 times less 
for PD-GA and 1000 times less for the Fuzzy PD than for 
cconventional PD controller. 

However, such energy transmitting increases amplitude 
of Pitch angle in case of PD-GA controller that conducts to 
increase torque in Links control system. But, after learning 
by FNN the motion in the pitch direction becomes smooth 
with small amplitude. It confirms about learnability and in-
tellectualization of the Robotic Unicycle control system.  

As can be seen from Figure 11 a, the movement of the mod-
el is smoother, which leads to a saving of the resource of the 
system as a whole. Also shown are the changes in the gain kp1, 
kd1, kp2, kd2 of the control equations (4.1) and (4.2). From 
the Figure 11a its visible that the model movement is going 

Scheme 1. MathLab Simulink® diagram of the Robotic Unicycle computer simulation - main part
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smoother, which leads to the system resource saving at whole. 
There are also shown the gain coefficients kp kd kp kd1, 1, 2, 2  
changes in the control equation (4.1) and (4.2).

a

b

c

a
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b

c

a

b
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c

d

e

f

DOI: https://doi.org/10.30564/aia.v2i1.1556



88

Artificial Intelligence Advances | Volume 02 | Issue 01 | April 2020

Distributed under creative commons license 4.0

d

e

f

Figure 10. Stochastic simulation results of Robotic Uni-
cycle Model: Temporal mechanical and thermodynamic 
behavior of Robotic Unicycle with: (a) conventional PD 
controller; (b) PD-GA controllers; (c) Fuzzy PD control-
lers; Temporal mechanical and thermodynamic behavior; 

(d) conventional PD control system torques; (e) PD-
GA control system torques; (f) Fuzzy PD control system 

torques
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Figure 11. Stochastic simulation results of Robotic Uni-
cycle Model with different GA’s fitness functions - Eval и 

Eval2

The introduction of the GA fitness function in the qua-
dratic form of a generalized function excludes the controls 

leading to local instability (negative value of the general-
ized entropy). As a consequence, it gives improved char-
acteristics of control quality (minimum complexity in the 
implementation of the gain coefficients change laws time, 
minimum driving mechanisms efforts and useful resource 
consumption). In this case, the information-thermodynam-
ic law of the compromise distribution of the conflicting 
control qualities (stability, controllability and robustness) 
is fully satisfied.

Experimental Results Discussion. Created in 1997-
2000, the robotic unicycle is shown in Figure 6. The ex-
perimental results are presented in Figure 12-13. The time 
of the full-scale experiment was limited to 8 seconds due 
to the adverse effect of the gyroscopic sensors drift signal. 

Though, it should be noted that sampling (more than 
0.001 sec) of control signal from conventional PD, as it is 
present in real model, offers the Unicycle simulation sys-
tem to “falling” after 8-10 sec. 

In Figure 12 shows the experimental results for the 
cableless unicycle model. As it shown, the robot’s lateral 
stability - in the roll direction γ, and posture in the pitch 
direction β is obtained.

In Figure13 shown the temporal behavior of the fuzzy 
gains kp1, kd2, kp2, kd2 for 2 PD controllers (Eq. 4.1, 4.2). 

From the result in Figure 11c absorbed that the robot’s 
posture in the yaw direction a is changed rapidly during 
the experiment, which indicates a satisfactory redistri-
bution of control energy that provides lateral stability of 

Figure 12. Experimental results, angles - pitch β, roll γ and yaw α angles

Figure 13. Experimental results of the fuzzy gains temporal behavior kp1, kd2, kp2, kd2 for 2 PD controllers
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the robot (roll γ) and tracking stochastic excitations on 
the model (floor roughness’s and jamming in closed-links 
mechanisms) by controlling the yaw angle α and pitch an-
gle b.

Remark 1. The obtained experimental results were 
achieved using empirically generated fuzzification and 
defuzzification functions for the gain coefficients kp1, 
kd2, kp2, kd2 of two fuzzy PD controllers, which were 
generated on the basis of preliminary results of GA simu-
lation with the fitness function - reduction only the entro-
py production rate of the control system, i.e. incomplete 
simulation process of soft computing technology. The 
simulation results presented above were obtained later, 
upon completion of the of a robotic unicycle mathematical 
model development (Figure 2, Eq. (1.2)), formation the 
soft computing process technology (Figure 3), and most 
importantly, the occurrence of this approach calculating 
possibility - appropriate computational capabilities, with-
out which this process was extremely difficult.

Remark 2. Despite of this, the obtained result at this 
time and with those computational capabilities, leads to 
confirmation of quite satisfactory operation of the rep-
resented structure of the intelligent control system. The 
represented structure of the process, as well as the new de-
velopments in this direction, is planned to be fully applied 
in the new prototype - an Autonomous Flexible Robotic 
Unicycle.

8. Conclusions

(1) In this work represents the basic idea of intelligent 
control of dynamical, globally unstable, nonlinear ob-
jects on the robotic unicycle example. The basis of this 
approach is a qualitative physical analysis of the robot 
dynamic movement with the introduction of intelligent 
feedback in the control system and the implementation of 
instinct and intuition mechanisms based on the FNN and 
GA.

(2) The main components of an intelligent control sys-
tem based on soft computing and robustness determina-
tion are also presented. Thus, there is an adaptation of the 
two fuzzy PD controllers’ parameters to achieve a stable 
motion of the robotic unicycle over a long(finite) time 
interval, without changing the structure of the control sys-
tem executive level, is achieved.

(3) The introduction of these two new mechanisms 
to an intelligent control system is based on the principle 
of minimum entropy production in the robot unicycle’s 
motion and the control system itself. The fuzzy stochastic 
simulation of thermodynamic equations of motion and the 
intelligent control system confirm the effectiveness of the 
robot’s postural stability control to handle the system’s 

nonlinearity [20-22].
(4) In this case the unicycle robot model is a new 

benchmark for intelligent fuzzy controlled motion of a 
nonlinear dynamic system with two (local and global) 3D 
unstable states.

(5) The use of a fuzzy gain schedule PD controller with 
look-up tables calculated by FNN, offers the ability to use 
instinct and intuition mechanisms in on line to intellectu-
alize the intelligent control system levels.

(6) Quantum soft computational intelligence toolkit [23-

26] applied to design of self-organized conventional PD 
controllers can increase the robustness of robotic unicycle.
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