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Remarkable progress in research has shown the efficiency of Knowledge 
Graphs (KGs) in extracting valuable external knowledge in various do-
mains. A Knowledge Graph (KG) can illustrate high-order relations that 
connect two objects with one or multiple related attributes. The emerging 
Graph Neural Networks (GNN) can extract both object characteristics 
and relations from KGs. This paper presents how Machine Learning (ML) 
meets the Semantic Web and how KGs are related to Neural Networks 
and Deep Learning. The paper also highlights important aspects of this 
area of research, discussing open issues such as the bias hidden in KGs at 
different levels of graph representation.
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1. Introduction

Due to the large volume of data on the Web, there is 
a growing interest in KGs, playing an important role in 
applications such as Search Engines. KGs were first intro-
duced by Google in 2012 and used as an Internet search 
strategy. Using these graphs, simple word processing has 
become a symbolic representation of knowledge. KGs 
are also used by social networking and e-commerce Web 
applications and are of particular interest to the Semantic 
Web (SW) community [1]. Although there is no single defi-
nition of a KG, it can be defined as a way of representing 
a database of interconnected descriptions of real-world 
entities and events or abstract concepts.

Although KGs are easily understood by humans and 
contain high-level information about the world, it is dif-
ficult to exploit them for ML, one of the more significant 

research fields of Artificial Intelligence. Its goal is to cre-
ate systems that can be trained from empirical/sample data 
that they have observed in the past, to perform the work 
for which they are intended more effectively by analyzing 
a vast amount of operational data [2].

ML and KGs combination is fast-moving. On the one 
hand, ML techniques improve the performance of various 
data-driven tasks with great accuracy. On the other hand, 
KGs provide the competence to represent knowledge 
about entities and their relationships with high reliability, 
explanation, and reuse. Consequently, a combination of 
KGs and ML will systematically improve systems accura-
cy, explainability, and reuse, expanding the limits of ML 
capabilities [3].

This paper is structured as follows: Section 2 presents 
KGs, while Section 3 discusses KGs and Ontologies’ re-
lation. The connection between KGs and ML is presented 
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in Section 4. Section 5 discusses the association of KGs 
to Deep Learning and Section 6 discusses open issues and 
challenges in this domain. Finally, Section 7 concludes the 
paper.

2. Knowledge Graphs

There have been several attempts to definite what a 
Knowledge Graph is. Due to the different definitions 
already present in the literature [1], some inconsistencies 
have been inevitably merged. In addition to the definition 
in Wikipedia, other newer and important definitions have 
been proposed by various researchers [4,5,6]. A knowledge 
graph is the organization and representation of a knowl-
edge base (KB) as a multidomain graph, whose nodes rep-
resent entities of interest, combining different sources of 
controlled vocabularies and data. An example is illustrated 
in Figure 1.

Figure 1. Knowledge graph example. Nodes represent 
entities, edge labels represent types of relations, edges 

represent existing relationships.

According to Ehrlinger [7], a KG obtains and incorpo-
rates information of an ontology and utilizes a reasoner to 
derive new knowledge. This definition assumes that a KG 
is considered more advanced than a KB because a) it uses 
a reasoning engine in order to generate new knowledge 
and b) supports more than one information sources. This 
definition does not consider the size factor, as it is not 
clear what a ”large” graph is.According to Farber [8] and 
Huang [9], a KG is defined as being a graph represented 
with Resource Description Framework (RDF).According 
to Paulheim [10], KGs are considered to cover a notable 
part of the domains that exist in the world and are not 
defined to be limited to only one.According to Bizer [11], 
KGs provide an opportunity to explore in more depth the 
understanding of how knowledge can be managed on the 
Web and how the knowledge gained from it is broken 
down into more accustomed Web-based data publishing 
schemes like Linked Data.

Some of the most well-known non-public KGs are 
Google KG, Microsoft KG, and Facebook KG. There are 
also other well-known and widely used KGs available to 
the public, such as DBpedia and Wikidata KGs. There are 

not existing explicit references for most KGs, regarding 
the methods of extracting knowledge that KGs use, nor 
about their general shape, visualization, and storage of all 
this knowledge [12]. There are mainly two approaches to 
creating a KG: a) top-down (schema-driven) and b) bot-
tom-up (data-driven). In the first approach, the ontology 
and the schema of the graph are first defined and then the 
data are entered. In the second, knowledge is extracted 
from various sources (e.g., text documents, databases, as 
well as from linked open data) and after being merged, the 
schema of the KG is constructed.

Facebook KG is an essential tool enabling internal 
search within the Facebook platform to produce more 
and more accurate results when used by connected users. 
Google KG is a valuable tool of Google, which contains 
information from various sources like Wikipedia in order 
to produce better and more complete results in the search 
engine. DBpedia KG is a huge knowledge base created by 
processing information from Wikipedia for the purpose 
of making it available on the Web of Data. However, in 
Wikipedia, because of the plethora of pages it contains, 
and especially those in different languages, there are 
contradictions, creating inaccuracies in the information. 
The problem of managing this data was solved by Wiki-
data KG, where all languages were integrated into one 
version of Wikidata so that information could be linked 
to multiple languages at the same time. It also allows the 
existence of conflicting information by providing a system 
that organizes everything properly [8].

3. Knowledge Graphs and Ontology

A domain ontology is a formal and explicit specifi-
cation of shared and agreed conceptualizations that are 
related to specific domain e.g., an ontology for a museum, 
an ontology for security, an ontology for surveillance. An 
ontology may define only the schema of the represented 
knowledge (classes, relations between them, and class 
restriction axioms) or the schema and the actual data that 
are semantically described by the defined schema. In the 
second case, the ontology is a populated one i.e., an ontol-
ogy with populated classes. In other words, ontology is a 
knowledge base that stores knowledge about domain-spe-
cific entities, and those entities are classified as instances/
individuals of its ontological classes.

A KG and a populated ontology are similar in a way. 
They are both related to the Resource Description Frame-
work (RDF) for representing their data. They may both 
represent domain knowledge using semantic relations 
(links/edges) between entities (nodes). Knowledge about 
entities is represented by a statement in the form of a tri-
ple i.e., subject, predicate, object (SPO), where predicate 
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is a relationship between the other two entities, as present-
ed in Figure 2.

However, KGs and populated ontology (ontology-based 
knowledge bases) have some differences in respect to 
their aim. KGs often contain large volumes of factual in-
formation (facts about represented entities) with less for-
mal semantics (class restriction axioms, definitions). On 
the other hand, an ontology defines the terminology of the 
domain and the semantic relations between terms, making 
knowledge available for machine processing, whereas 
data is not the main concern at its design time. In addition, 
KGs can also represent knowledge about multiple do-
mains and therefore may contain more than one ontology 
[13]. 

Figure 2. A triple example representing the statement that 
Leonard Nimoy starred in Star Trek movie.

4. Knowledge Graphs and Machine Learning

ML is a way for the machine to become intelligent by 
learning from the data that is provided as input to a pro-
cess of data analysis, thus evolving a machine that per-
forms tasks into an intelligent machine. An ML method 
generally means a set of specific types of algorithms that 
are suitable for solving a particular type of computational 
problem. Such a method addresses any constraints that the 
problem brings along with it.

The most popular ML methods are supervised learning, 
semi-supervised learning, and reinforcement learning. The 
learning process consists of three stages: the acquisition of 
data, the processing/analysis of data so as to find possible 
generalizations or specializations, and the use of process-
ing results to perform the objective work.

ML in KGs and ontology are used to provide solutions 
to the type and link prediction, ontology enrichment, and 
integration [2]. In particular, because abstract reasoning 
was not applicable, and at the same time, while the ontol-
ogy were consistent, the information in it was incorrect in 
relation to a reference domain, ML methods were devel-
oped for the Semantic Web (SW) to resolve this topic.

Large-scale KGs, i.e., knowledge-based graphs, store 
real information as relationships between entities. In an 
automated knowledge base construction method, triples 
are automatically extracted from unstructured text through 

ML and Natural Language Processing (NLP) techniques. 
In recent years, automated methods have been gaining 
more attention, because all other methods either have 
several limitations or do not scale well due to their depen-
dence on human experts [3].

The Semantic Web technology targets to make the Web 
readable from the machines [14], by enriching resources 
with metadata. To manage these metadata, the OWL for-
mat is used while the reasoning capabilities —provided 
by the ontology— are also taken into account. However, 
metadata management process meets significant limita-
tions —especially in cases of linked data— that include 
but are not limited to the time consumption for ontology 
construction, inconsistent and noisy data.

Hence, problems of query answering, instance retriev-
al, link prediction, and ontology refinement and enrich-
ment have emerged with the three firsts considered by 
ML methods as classification problems, while the last as 
a concept learning problem. ML methods’ introduction to 
solving classification and concept learning problems on 
the Semantic Web domain considers the advantages of the 
numeric-based (sub-symbolic) approaches such as Deep 
Learning [15] and embeddings. These ML methods are gen-
erally categorized into two categories, symbol and numer-
ic-based.

The symbol-based category consists of methods that 
aim to tackle the Semantic Web problem from the view-
point of reasoning. This includes methods that aim to 
deal with the problems related to (i) instance retrieval, (ii) 
concept learning for ontology enrichment, (iii) knowl-
edge completion, and (iv) learning disjointness axioms. 
The instance retrieval problem defined as the assessment 
if an individual is an instance of a given concept and has 
been solved as a classification problem. Similarity-based 
methods such as K-Nearest Neighbor (KNN) and Support 
Vector Machines (SVM) have been proposed in early 
years [16,17,18], while later, more intelligible methods, based 
on Terminological Decision Tree (TDT), have been also 
proposed [19,20].

Concept learning for ontology enrichment problem is 
focused on the enrichment of ontology and of learning 
concepts descriptors. This problem is managed as a su-
pervised concept learning problem at approximating an 
intentional Descriptions Logics representation. There are 
a number of methods related to this category [21,22,23,24,25]. 
The problem of knowledge completion aims to find infor-
mation missing from the knowledge base. An indicative 
method that tackles this problem is AMIE [26,27]. AMIE 
target to mine logic rules from RDF knowledge bases in 
order to further predict new assertions. In a recent work [27], 
the system targets to mine SWRL rules from OWL ontolo-
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gy. Learning disjointness axioms methods aim to discover 
axioms from the data that during the modelling process 
are overlooked and lead to misunderstanding the negative 
knowledge of the target domain. Indicative methods that 
tackle this problem are proposed in other works [28,29]. 
These methods study the correlation between the classes, 
the negative and association rules, and the correlation co-
efficient.

The numeric-based category consists of methods target 
to link prediction problem. This problem is solved as a 
classification problem and refers to the existence or not of 
triplets, usually in RDF format. Two types of models have 
been proposed to address this problem so far, the proba-
bilistic latent models and the embedding models. A prob-
abilistic latent model’s indicative method is the Infinite 
Hidden Semantic Model (IHSM) [30]. This model formal-
izes a probabilistic latent variable that associates a latent 
class variable with each resource/node and makes use 
of constraints expressed in First-Order Logic during the 
learning process. Similarly, to the probabilistic models, 
embedding models represent each resource/node with a 
continuous embedding vector encoding its intrinsic latent 
features within the data collection. An indicative method 
embedding model has been proposed [31], named RES-
CAL, which implements graph embedding by computing 
a three-way factorization of an adjacency tensor represent-
ing the multi-graph structure of the data collection.

5. Knowledge Graphs And Deep Learning

Over the last few years Deep Learning has introduced 
a great number of machine-learning tasks, ranging from 
image scene classification and video analysis to natural 
speech and language understanding and recognition. The 
data used within these tasks are characterized by various 
data types such as images, voice signals, feature vectors, 
and are typically represented in the Euclidean space. 
Deep Learning approaches successfully manage the afore-
mentioned data types build upon variant deep network 
architectures include but are not limited to Convolutional 
Neural Networks (CNNs) [32], Recurrent Neural Networks 
(RNNs) [33], Long Short-Term Memory (LSTM) [34] and 
auto-encoders [35]. Opposite to the architectures men-
tioned, there are a great number of deep learning-based 
architectures that their data used forms are projected to a 
non-Euclidean space, especially in the form of KGs [36]. 
This data structure overcomes the restrictions of inter-
action assumption following a linking approach. Thus, 
during the linking between the items and their attributes, 
each node is linked with various nodes and variant types.

Connecting nodes in the KG may have distinct neigh-
borhood size, and the relationships between them could 

vary as well. The need to handle the above complexity of 
KGs stimulates new neural network architectures men-
tioned as Graph Neural Networks (GNNs) [37].

Figure 3. A ConvGNN with two graph convolutional 
layers. Each convolutional layer encapsulates each node’s 
hidden representation by aggregating feature information 
from its neighbors. ReLu [48] activation function is applied 

to the resulted outputs. The final hidden representation 
of each node receives messages from a further neighbor-

hood[37].

Graph Neural Networks were initially mentioned in 
2005 in the work of Gori et al. [38] and later extended by 
the work of Scarselli et al. (2009) [39], and Gallicchio et al. 
(2010) [40]. According to the above works, Graph Neural 
Networks learn a target node’s representation based on 
propagating the information to one or many neighbors in 
a recurrent way until a stable fixed point is reached. This 
process lacks computational efficiency; thus, recently, 
there have been increasing efforts to overcome this limita-
tion [41,42]. These studies belong to the category of Recur-
rent Graph Neural Networks (RecGNNs). Considering the 
success of Convolutional Neural Networks in the com-
puter vision domain, many methods that adapt the notion 
of convolution to the graph data have been developed. 
These methods belong to the research field of Convolu-
tional Graph Neural Networks (ConvGNNs). An example 
of a ConvGNNs architecture is illustrated in Figure 3. 
Methods based on Convolutional Graph Neural Networks 
are generally separated into two distinct categories, the 
spectral-based and the spatial-based. The indicative meth-
od that belongs to the spectral-based category is the one 
proposed by Bruna et al. (2013) [43]. Later related works 
[44,45,46,47] proposed methods in order to further improve and 
extend spectral-based Convolutional Graph Neural Net-
works.

The research of spatial-based Convolutional Graph 
Neural Networks started much earlier than spectral based 
Convolutional Graph Neural Networks. In 2009, Miche-
li et al. [49] first addressed graph mutual dependency by 
architecturally composite non recursive layers, while in-
heriting ideas of message passing from Recurrent Graph 
Neural Networks. Although, the significance of this 
work was overlooked, until recently, many spatial-based 
Convolutional Graph Neural Networks [50,51,52] have been  
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emerged. Apart from Recurrent Graph Neural Networks 
and Convolutional Graph Neural Networks, many alter-
native Graph Neural Networks have been proposed in the 
past few years, including but are not limited to Graph Au-
toencoders (GAEs), and Spatial-Temporal Graph Neural 
Networks (STGNNs). These learning frameworks can be 
built on Recurrent Graph Neural Networks, Convolutional 
Graph Neural Networks, or other neural architectures for 
graph modeling.

Wu et al. [37] presented a taxonomy of graph neural net-
works in the context of a comprehensive study of Graph 
Neural Networks. The Graph Neural Network architec-
tures are categorized into four categories. The first catego-
ry consists of the Recurrent Graph Neural Networks (Rec-
GNNs) that mostly are pioneer works of Graph Neural 
Networks. Recurrent Graph Neural Networks aim to learn 
node representations with recurrent neural architectures. 
They assume that a node in a graph constantly exchanges 
information with its neighbors until a stable equilibrium is 
reached. Recurrent Graph Neural Networks are conceptu-
ally important and inspired later research on Convolution-
al Graph Neural Networks. In particular, the idea of mes-
sage passing is inherited by Spatial-Based Convolutional 
Graph Neural Networks.

The second category is related to Convolutional Graph 
Neural Networks (ConvGNNs) that aim to generalize the 
operation of convolution from grid data to graph data. The 
main idea is to generate a node representation by aggre-
gating its own features and neighbors’ features. Different 
from Recurrent Graph Neural Networks, Convolutional 
Graph Neural Networks stack multiple graph convolu-
tional layers to extract high-level node representations. 
Convolutional Graph Neural Networks proved beneficial 
to be the base for developing more complex Graph Neural 
Network models.

The third category consists of the Graph Auto-Encoders 
(GAEs) that benefits from the lack of the need for labelled 
data and subsequently are following unsupervised learning 
training. Besides, these frameworks encode nodes/graphs 
into a latent vector space and reconstruct graph data from 
the encoded information. Graph Auto-Encoders are used 
to learn network embeddings and graph generative distri-
butions. For network embedding, Graph Auto-Encoders 
learn latent node representations through reconstructing 
graph structural information such as the graph adjacency 
matrix. For graph generation, some methods generate 
nodes and edges of a graph step by step, while other meth-
ods output a graph all at once.

The last category embodies the Spatial-Temporal Graph 
Neural Networks (STGNNs). The goal of the methods 
belongs to this category is to learn hidden patterns from 

spatiotemporal graphs and subsequently to be applied to 
variant applications related to traffic speed forecasting 
[53], driver maneuver anticipation [54], and human action 
recognition [55]. The main idea of Spatial-Temporal Graph 
Neural Networks is to consider spatial dependency and 
temporal dependency at the same time. Many current ap-
proaches integrate graph convolutions to capture spatial 
dependency with Recurrent Neural Networks or Convolu-
tional Neural Networks to model the temporal dependen-
cy.

6. Open Issues and Challenges

One of the major recent issues and challenges in KG 
and ML research is bias. In general, research bias con-
cerns the interference in the results of research (mainly 
in AI research) by predetermined ideas. Data in ML al-
gorithms used in AI systems can be biased, but so can 
the algorithms that analyze it. Both data and algorithms 
are created by people, and people are usually subjective. 
When data is subjective/biased, data samples are not per-
fect representatives of their relative datasets involved in 
algorithmic analysis. A recent case of representational bias 
is Google’s image search for “CEO”, depicting mostly 
males that can be used to “teach” an intelligent system to 
recommend doctors as a career choice for men and nurse 
for women.

ML/DL community work about how to address rep-
resentational biases have not yet reached the KG and 
Semantic Web communities. The current status of Linked 
Open Data (LOD) cloud may be free of sampling bias. 
However, the data available to both open and commercial 
KGs today is, in fact, highly biased. Debiasing KGs (data 
and schema) will soon become a major issue as these are 
now rapidly used in several ML-based algorithms of AI 
systems and applications.

Debiasing KGs must be examined at the level of data 
(data bias) as well as the level of schema (schema/ontology 
bias). Entities represented in DBpedia’s KG, for instance, 
either spatial or non-spatial, do not cover the global range 
of available data (all the world as we know it). Instead, the 
coverage of data related to Europe- and US-based entities 
is clearly larger than Asia’s. On the other hand, bias at the 
schema/ontology level, is also highly possible, since most 
of the ontologies are engineered following a top-down 
methodological approach, often with application needs in 
mind. In such cases, knowledge engineers/workers and 
domain experts collaborate, propagating their subjective 
engineering choices in the ontological design patterns (hu-
man-centered approach). Last but not least, if a bottom-up 
(data-driven) ontological engineering approach is followed, 
for instance, based on ML algorithms that extract/learn on-
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tological axioms/rules from available sample data, the bias 
problem remains as it is probably propagated from biased 
data, as discussed earlier.

Therefore, a new methodology for the engineering of 
bias-free KGs is required, supported by suitable tools 
for managing KGs both at the level of data and schema, 
aligned with modern policies/rules for AI bias elimination. 
Based on such a methodology (specifying distinct phases, 
processes and tasks), it is expected that unbiased AI appli-
cations will prevail. From a mis-rejected job application 
to the false arrest of an innocent fellow and the misiden-
tifying of the actual criminal or threat, debiasing AI ap-
plications must be a priority and a continuous concern of 
actions to be taken in the era of AI applications that are 
highly based on ML/DL and KGs.

7. Conclusions

In this paper, the interconnection of KGs and ML/DL 
has been presented, and important applications in several 
fields are discussed. In addition, the interrelation between 
ontology and KGs has been pointed out. A detailed repre-
sentation of both symbol and numeric-based ML methods 
has been provided, in order to overview the aforemen-
tioned connections. Deep learning and neural networks are 
related to KGs via Graph Neural Networks, which have 
become powerful and practical tools for ML tasks in the 
graph domain. In particular, the paper presents a catego-
rization of Graph Neural Networks into Recurrent Graph 
Neural Networks, Convolutional Graph Neural Networks, 
Graph auto-encoders, and Spatial-temporal Graph Neural 
Networks. Last but not least, the paper discusses open is-
sues and challenges in this research domain, highlighting 
the importance of KGs bias at both the schema (ontology) 
and the data level. It has been argued that, only if proper 
attention is given in the debiasing of KGs, ML/DL-based 
AI applications will really prevail.
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