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Electrical Impedance Tomography (EIT) as a non-invasive of electrical 
conductivity imaging method commonly employs the stationary-coeffi-
cient based filters (such as FFT) in order to remove the noise signal. In the 
practical applications, the stationary-coefficient based filters fail to remove 
the time-varying random noise which leads to the lack of impedance mea-
surement sensitivity. In this paper, the implementation of adaptive noise 
cancellation (ANC) algorithms which are Least Mean Square (LMS) and 
Normalized Least Mean Square (NLMS) filters onto Field Programmable 
Gate Array (FPGA)-based EIT system is proposed in order to eliminate the 
time-varying random noise signal. The proposed method was evaluated 
through experimental studies with biomaterial phantom. The reconstructed 
EIT images with NLMS is better than the images with LMS by amplitude 
response AR = 12.5%, position error PE = 200%, resolution RES = 33%, 
and shape deformation SD = 66%. Moreover, the Analog-to-Digital Con-
verter (ADC) performances of power spectral density (PSD) and the effec-
tive number of bit ENOB with NLMS is higher than the performances with 
LMS by SI = 5.7 % and ENOB = 15.4 %. The results showed that imple-
menting ANC algorithms onto FPGA-based EIT system shows significantly 
more accurate image reconstruction as compared without ANC algorithms 
implementation.
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1. Introduction

Electrical Impedance Tomography (EIT) employs 
multi-frequency impedance measurement within 
several electrodes that attached on the periphery 

of the dielectric object in order to reconstruct the con-
ductivity distribution. This conductivity distribution rep-
resents a useful meaning that varies with the application 
of EIT such as an anomaly functional biological tissues 
in the medical imaging applications or a multiphase flow 

visualization in the process imaging applications. In 
terms of EIT hardware design type, Field Programma-
ble Gate Array (FPGA)-based systems are continuously 
gaining interest as compared to programmable digital 
signal processor (PDSP)-based systems due to their flex-
ibility and higher bandwidth. Moreover, the FPGA-based 
EIT system allows us to take high-speed impedance 
measurement in a multi-electrode sensor with a sweep 
frequency which suitable with the required performance 
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of the EIT system for medical imaging such as cell sens-
ing in micro-channel [1], thrombus formation in blood 
flow [2], and for process imaging such as multi-phase flow 

[3], characterizations of Lithium-Ion battery [4].  
In practical EIT applications, the noise signal sources 

mainly behave as a time-varying random noise, which is 
difficult to overcome by the stationary-coefficient based 
filters [5-9]. In FPGA-based EIT system, the readout chain 
in the architecture of noise cancellation, the electronic 
circuit components, and the electronic circuit noise sig-
nal levels synergies each other to achieve the SNR of 
EIT system [10,11] Consequently, the architecture of noise 
cancellation of FPGA-based EIT system should be con-
sidered in advance,  because of insufficiently high sig-
nal-to-noise SNR in EIT system leads to the lack of im-
pedance measurement sensitivity due to the time-varying 
random noise [12,13]. The challenge in the development 
of FPGA-based EIT system for medical imaging is to 
achieve an acceptable SNR level of as low as 90 dB [14] 
by finding a matching the architecture of noise cancella-
tion and the high sensitivity detection. 

In order to eliminate the noise signal caused by a 
time-varying random noise in the FPGA-based EIT sys-
tem, one of the alternatives is by employing the adaptive 
noise cancellation (ANC) that can be integrated directly 
onto FPGA [15]. As compared with stationary-coefficient 
based filters such as FFT filters, using ANC provides a 
more appropriate application in the case of statistical 
parameters of signals change over time [16]. Previous in-
vestigators of FPGA-based EIT system [17-23] did not con-
sider the ANC and only applied with a specific architec-
ture of noise cancellation based-on stationary-coefficient 
based filters by assuming there is no temporal variant 
environment (leads to the time-varying random noise). 

The implementation of ANC onto FPGA-based EIT 
system is used to discriminate between the sensing sig-
nal Di and the noise signal h which depends on the elec-
tronics circuit design and frequently leads to a different 
architecture of noise cancellation [24-26]. The ANC au-
tomatically adjusts the filter transfer function based on 
an optimization algorithm. In digital signal processing 
fields, two different ANC algorithms are popular in the 
FPGA-based system, i.e., the Least Mean Square (LMS) 
and the Normalized the Least Mean Square (NLMS). 
The LMS finds the transfer function coefficients by 
calculating the least mean squares of the error signal 
between the output signal Yi and the sensing signal Di 
itself [27]. On the other hand, the NLMS is developed to 
overcome the drawbacks of LMS due to the instability 
of the algorithm in calculating the transfer function co-
efficient [28].

In this paper, two different ANC algorithms, i.e., 
LMS and NLMS are analyzed and implemented onto an 
FPGA-based EIT system in order to obtain higher accu-
racy of image reconstruction and the ADC performance 
parameters (the power spectral density (PSD) and the 
effective number of bits (ENOB)). The 2D reconstruct-
ed images quantitatively under experimental conditions 
in terms of amplitude response AR, position error PE, 
resolution RES, and shape deformation SD are also com-
pared.

2. Implementation of Adaptive Noise Cancel-
lation Algorithms

2.1 Architecture on FPGA-Based EIT System

Figure. 1 shows the proposed implementation of 
ANC algorithms on a field-programmable gate array 
(FPGA)-based electrical impedance tomography (EIT) 
system. FPGA-based EIT system is composed of a cir-
cular-shape sensor, multiplexer (MUX), signal condi-
tioning, and FPGA. The circular-shape sensor composed 
of 32 electrodes is attached to a MUX in order to inter-
change the boundary condition of electrodes, whether as 
transmitter electrodes (Vhc and Vlc) or receiver electrodes 
(Vhp and Vlp). FPGA consists of a voltage generator, im-
plemented ANC algorithms, and voltmeter. The transmit-
ter electrodes 

Figure 1.  Adaptive filter implementation in FPGA-based 
EIT system.

(Vhc and Vlc) are connected to the constant current 
source (CCS-PI controlled) in order to maintain the 
constant current inside of the sensor. Meanwhile, the re-
ceiver electrodes are connected to ANC algorithms and 
voltmeter through an analog-to-digital converter (ADC). 
The ANC algorithms are connected to each receiver 
electrodes readout. 

For each receiver electrodes readout, the converted 
analog data of Vhp[k] or Vlp[k] are the sensing signal 
at receiver electrodes D1[k] and D2[k]. Practically, the 
sensing signal Di contains noise signal h. Where i is the 
order number of signal. By using the filter tap weights 
vector W, the output signal Yi can be calculated, which 
is the free-noise signal of sensing signal Di. On this FP-
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GA-Based EIT System, the input signal X is the output 
of the voltage generator. In order to calculate filter tap 
weights vector Wi, the error signal ei should be main-
tained as low as possible which is given by the following 
relationship 

Figure 2. Scheme of an ANC algorithm: (a) block dia-
gram of LMS algorithm, and (b) block diagram of NLMS 

algorithm

i i i= −e D Y  (1)

The calculation of the filter tap weights vector W itself 
varies among the proposed ANC algorithms. In this study, 
the two ANC algorithms are explained in the following 
sub-section. 

2.2 Adaptive Noise Cancellation Algorithms

2.2.1 Least Mean Squares (LMS) Algorithm

In order to minimize the error signal ei, LMS algorithm 
is based on a stochastic gradient algorithm that uses 
a gradient vector of the filter tap weight to converge 
on the optimal Wiener solution [29]. The block diagram 
of LMS algorithm within an ANC scheme is shown in 
Figure. 2(b). It should be noted that the sensing signal 
Di induced by excitation voltage has a similar statisti-
cal property with the input signal X. Thus, generally, 
the sensing signal Di can be expressed by a weighting 
transformation which applied on the input signal X. 
With the filter tap weights vector W, it is feasible to 
train the input signal X and finally obtain the best filter-
ing result of the estimation of the desired signal Yi. The 
estimation of the desired signal Yi contains the noise 

signal h as low as possible by implementing the filter 
tap weights vector W. 

In order to achieve the optimal filtering, LMS adjust 
its filter parameters iteratively when the statistical prop-
erties of the sensing signal changes with the following 
equation [30]: 

µ       +       = +1 2k k k kW W e X  (2)

where, µ [-] is the step size parameter to control the 
speed of the LMS filter by using weight update for each 
iteration of ANC, and k is the number of iteration. In order 
to apply eq. (2) onto eq. (1), a structure of filter within the 
adaptive system employs a digital finite impulse response 
(FIR) filter in a time instant n [30].    

[ ] [ ] [ ] [ ] [ ]
1

0

L
T

i k
k

Y n W n X n k W n X n
−

=
= ∑ ∗ − =  (3)

X [n] = x (n) , x (n −1) ,, x (n − L +1)
T  (4)

W [n] = wn (0) ,wn (1) ,,wn (L −1)
T  (5)

Where, Lj is the filter length, and j is the value deter-
mined from the sequence 2n of 2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048.

2.2.2 Normalized Least Mean Squares (NLMS)
Algorithm

The NLMS algorithm, as shown in Figure 2(b) derived
from LMS revises the characteristics of the step size pa-
rameter m [-] in order to solve the LMS filter drawback [31,32].
In NLMS filter, the filter tap weights W[k+1] is normal-
ized with the squared Euclidian norm of the noise signal
h[k] as the following equation:

α

 
 
 

   +     
 

+    

= +       1
2

k k

c h k

W W e k X k  (6)

where, α is the NLMS adaptation constant that opti-
mizes the convergence rate of the NLMS filter, and its 
possible range is 0 < α < 2. c [-] is time-dependent filter 
coefficients which are the positive constant term and is 
always less than 1. In order to compute the norm of the 
noise signal h[k], eq. (7) is used as follows 
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h k h k  (7)

In the case of the LMS algorithm, a proper value se-
lection of the step size parameter m [-] is important to 
the performance of ANC. The lower value of step size 
parameter m [-], the longer time of LMS filter to converge 
on the optimal Wiener solution. However, the higher 
value of the step size parameter m [-], the LMS filter be-
comes unsteady and diverge. Moreover, the noise signal 
h amplitude is not steady during the change of time due 
to the instability of the input signal X that leads to the 
step size parameter m [-] varies in time and affects to the 
convergence rate [31,32]. In this regards, finding the best of 
the step size parameter m [-] of LMS is troublesome.

3. Experiments

3.1 Experimental Setup and Conditions

As shown in Figure.3, the experimental setup of an FP-
GA-based EIT system is composes of a high resolution 
and high speed ADC by implementing the Red-Pita-
ya platform which has a dual-port (14 bit DAC, 125 
MSps) DAC1401D125 from NXP Semiconductors, a 
dual-ADC’s (14 bit ADC, 125 MSps) LTC2145 from 
Linear Technology, and a FPGA-ZYNQ 7010 Sys-
tem on Chip (SoC) from Xilinx Co.Ltd. This FPGA 
is chosen because it has potentially sufficient for the 
implementation of a complete instrument with an ANC 
and a spectrum analyzer with a portable system. The 
input stage of FPGA-ZYNQ 7010 has been modified 
by inserting 1:1 RF balun as an isolation transformer, 
enabling the acquisition of signals up to 125 MHz in 
order to increase the bandwidth of measurement and to 
characterize the jitter effect [33]. This FPGA-based EIT 
system has 32-channels electrode with vessel diameter 
d = 125 mm. The 32-channel electrodes are attached on 
the active electrode circuit that converts the analog sig-
nal transmission between electrode and FPGA system 
into the digital signal.

In order to eliminate the need of constant current 
circuit, an artificial constant current source proportion-
al-integral controlled (CCS-PI controlled) is used by 
implementing a PID controller inside of FPGA (see Fig-
ure.1 and Figure. 4(a)). This method could be possible 
because of the intensity of input signal X and the range 
resistance of Rload which is the electrical properties of an 
object interest are known priory. Figure. 4(b) shows the 
comparison of current Iout that injected onto the object of 
interest in the case of variant Rload. The result shows that 
constant current is stable until frequency 35 kHz.  

3.2 Phantom Conditions

Figure 3. Manufactured of FPGA-based EIT system 
which consists of (a) 32 active electrodes attached to 

circular-shape vessel, (b) MUX-I or MUX-V (electrode 
switching), (c) Signal conditioning, and (d) FPGA sys-

tem based on ZYNQ-7010

Two agar phantoms to demonstrate the feasibility of 
the proposed method were built based on NaCl powder 
(Wako, Osaka, Japan) and agar powder (Wako). Agar 
phantom-1 was composed of chicken meat with a diam-
eter of d1 = 50 mm and immersed in agar phantom back-
ground with conductivity σb = 0.3 S/m.

Figure 4. (a) Block diagram of constant current source 
PI controlled, and (b) constant current at frequency vari-

ant.  

Agar phantom-2 was composed of one cylinder agar 
block inclusion with a diameter of d2 = 20 mm and con-
ductivity si = 0.7 S/m was immersed in agar phantom 
background with conductivity σb = 0.3 S/m. Image noise 
analysis is evaluated with input signal X = 2 Vp-p and five 
different positions of cylinder agar inclusions along the 
x-axis from right to left until the center of the conductive 
medium. 

3.3 Image Reconstruction Evaluation Method

Five different positions of cylinder agar inclusions 
are investigated by using the image reconstruction 
performance parameters in EIDORS, which are ampli-
tude response AR, position error PE, resolution RES, 
and shape deformation SD [34]. AR [-] indicates how the 
inclusion’s amplitude contribute to the overall recon-
structed image’s amplitude by measuring the ratio of 
image pixel amplitudes between the normalized inclu-
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sion’s amplitude Am [-] and the normalized area of inclu-
sion AinN 

[-]. m is the pixel matrix of the reconstructed 
image with resolution 64 x 64. 

=
∑ m
m

inN

A
AR

A
 (8)

PE [-] indicates the accuracy of the reconstructed im-
age in detecting the location of inclusion. rt is the pre-
dicted center of the inclusion in the reconstructed image, 
while rq is the actual location of the center of the inclu-
sion in the phantoms.

t qPE r r= −  (9)

RES [-] indicates the smallest visible object by calcu-
lating the ratio of inclusion’s area Ain [mm2] and total 
reconstructed image’s area AT [mm2]. 

/= in TRES A A  (10)

SD [-] indicates the fraction of the outside area of in-
clusion Ac [mm2] in the reconstructed image, which is 
not covered by the inclusion area Ain [mm2].  Ain [mm2] is 
the area of inclusion in the reconstructed image. 

SD =
A
A

in

c  (11)

3.4 Experimental Results and Evaluation

Figure. 5 shows the comparison of reconstructed images 
of agar phantom-1 by using and without adaptive filter 
algorithms in the case of different input signal ampli-
tude X = [X, X/2, X/3, X/5]. The ANC algorithms used 
Figure. 5 was NLMS. Without using the ANC algorithm 
on FPGA-based EIT system shows the inaccuracy of the 
reconstructed image as compared with using the ANC. 

Figure. 6 shows the comparison of reconstructed 
images of agar phantom-2 based on LMS and NLMS 
algorithm implementation. It can be seen that the LMS 
filter algorithm is dominantly contributed by image noise 
from near the boundary position to the center position 
of object inclusion. Reconstructed images of NLMS is 
preferable from the inclusion, which is placed close to 
the electrodes to the center position. Although NLMS re-
constructed images pattern has less tolerant to noise and 
a lower dynamic range, it performs better when the tar-
get is placed close to the electrodes. The image artifact 
on LMS and NLMS reconstructed images has increased 
slightly among the different inclusion.

The evaluation of reconstructed images is shown in 
Figure. 7. The reconstructed EIT images with NLMS is 
better than the images with LMS by amplitude response 
AR = 12.5%, position error PE = 200%, resolution RES = 
33%, and shape deformation SD = 66%. The desired be-
havior of amplitude response AR is constant in the whole 
position inside the sensor. The reconstructed images of 
LMS and NLMS showed similar behavior in the case of 
AR. In the case of position error PE, reconstructed im-
ages of LMS have bigger PE as compared with NLMS. 
The instability of the sensing signal causes the higher 
PE of LMS, and it is indicated by high image noise as 
shown in Figure. 6. Meanwhile, in the case of resolution 
RES, the desired behavior is small and uniform. Both 
reconstructed images of LMS and NLMS showed similar 
behavior in the case of RES. Furthermore, this instabil-
ity sensing signal can be quantified by using the shape 
deformation SD. As can be seen in the image reconstruc-
tion of LMS, it has high shape deformation. The value of 
shape deformation SD also indicates that the LMS filter 
algorithm is not properly filtered and still create image 
artifact in the reconstructed images. 

Figure 5. Comparison of reconstructed images between 
using and without adaptive filter.
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Figure 6. Comparison of reconstructed images.

4. Discussion

4.1 Analysis Method and Condition

We discuss the analysis of ANC algorithms implemented 
onto FPGA-based EIT system in terms of the capability to 
reduce noise signal. Both phase and amplitude of sensing 
signals entering ADC D0,i[k] as shown in Figure.1 have 
affected by the noise signal as well as input signal leav-
ing DAC X[k]. The noise signal sources in FPGA-based 
EIT system as shown in Figure. 8 consists of the input 
signal noise g[k], the sample-and-hold (S/H) noise r[k], 
the voltage reference noise b[k], and the quantizer noise 
q[k]. Based on the dependent response of the input signal 
variance, the performance of ANC algorithms was investi-
gated. 

Figure 7. Evaluation of image reconstruction performanc-
es: (a) amplitude response AR, (b) position error PE, (c) 

resolution RES, and (d) shape deformation SD.

Figure 8. Noise signal sources model on FPGA-based 
EIT system.

The input signal noise g[k] of an ADC behaves as an 
additive white noise [35], [36] which mainly affects the ampli-
tude sensing signal. The additive white noise is caused by 
such as a thermal, and circuit node noise. The contribution 
of additive white noise can be expressed by 

[ ] [ ] [ ]0,a is k D k g k= +  (12)

The sample-and-hold (S/H) noise r[k] or aperture jitter 
affects mainly on the phase sensing signal. Time fluctu-
ations occur in ADC’s sample-and-hold which generate 
a parametric noise. Time fluctuations are also known as 
aperture jitter which is defined as the variation of the 
sampling instant at a time kt. Hence, the effect of aperture 
jitter can be described as follows

[ ] [ ]( )b as k s kt r kt= +  (13)

At this stage, sb[k] is converted into digital form, as de-
scribed in eq. (15), where m is the resolution of the ADC, 
Vref is the voltage reference, and q[k] is the quantization 
noise: 

[ ] [ ] [ ]2m

c b
ref

s k s k q k
V

= +  (14)
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At the voltage reference stage, the voltage reference 
noise b[k] caused by a non-ideal source from instability 
voltage over temperature and time. The voltage refer-
ence noise b[k] is described as a non-ideal source, Vref = 
Vrb (1+b[k]). Here, Vrb is the nominal value. This noise 
behaves as a parametric noise that the character noise de-
pends on the voltage reference topology [37]. Differential 
amplifier equation is to solve the constant values of m and 
Vrb. The voltage reference noise as a reference in input 
ADC can divide the ADC output by 2m/Vref. Hence, ADC 
output is expressed as

[ ] [ ]
2
rb

d c m
v

s k s k=  (15)

Lastly, the ADC output is stated in terms of the additive 
and parametric noise are described by 

[ ] [ ] [ ]( )( )( ) [ ]( )1i bX k g k s kt r k b k= + + +  (16)

The voltage reference noise is considered b[k] << 1. 
Considering the noise signal sources as aforemen-

tioned, thus we can analyze how this noise signal sources 
affect the amplitude and phase sensing signal by the fol-
lowing mathematical relationship

[ ] [ ]0
0

1 2PN g k V r k
V

π= +  (17)

Where 1/V0 is normalization of amplitude fluctuation 
generated by input signal noise and summing using the 
conversion of aperture jitter [ ]02 V r kπ false from analog 
to digital converter. The unity of PN is radian.  Mean-
while, the amplitude signal noise AN is also generated by 
input signal noise, but with a difference summation that is 
induced by voltage reference noise b[k]: 

[ ] [ ]
0

1AN g k b k
V

= +  (18)

The AN is a non-dimensional. Then, the phase and 
amplitude signal noise can be fitted by polynomial law to 
compute the power spectrum density: 

[ ] [ ] [ ]2 2
02

0

1 4Q g rS f S f V s f
V

π= +  (19)

[ ] [ ] [ ]2
0

1
I g bS f S f S f

V
= +  (20)

Thus, the PSD of phase signal noise SQ[f] and ampli-

tude signal noise SI[f] can be calculated by Eq. (19) and 
Eq. (20) respectively. In this PSD of amplitude and phase 
signal noise, the contribution of each noise signal sources 
is identified as a complete description of the device limita-
tions. 

4.2 Analysis Results

We realize that the readout of the estimation of the output 
signal Yi is available at a single frequency signal. Because 
the impedance measurements are a sweep frequency mea-
surement, we need to confirm the free noise of sensing 
signal Di at the readout of the voltmeter in the spectral 
region. In this regards, we need to apply the power spec-
tral density PSD analysis. The ANC algorithms of LMS 
and NLMS are supposed to suppress the noise signal hi in 
order to obtain the estimation of the output signal Yi with-
out the drawbacks from the noise signal. The LMS and 
NLMS are evaluated through PSD analysis by comparing 
with PSD of noise signal floor NF. As shown in Figure. 9, 
the PSD of NF is NF = -164 dBV2/Hz in the case of ADC 
14 bit, primary signal X = 2 Vp-p, and the step size parame-
ter µ = 0.002 [-]. As closer the PSD of the desired signal to 
PSD of NF, it indicates as better ANC algorithms perfor-
mance.

Figure 9. Comparison of PSD of amplitude sensing signal 
SI between NLMS, LMS, and Noise floor in the case of 

phantom as shown in Figure 5

The spectrum analysis of four noise sources has been 
considered as a common noise of two ADC of receiver 
electrodes, as shown in Figure. 8. The output of ADC was 
synchronously sampled by one sample every one signal 
period in order to measure the influence of noise signals. 
The sensing signal Di which is the output of ADC has 
affected by the noise signal can be analyzed in terms of 
amplitude and phase signal which were detected by using 
two points of a cosine wave of ui[k]. These points consist 
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of zero-crossing detection and voltage peak detection. 
Zero crossing detection is related to phase signal noise 
PN, the measurement of PN results in the prediction of the 
phase noise generated by quadrature noise. Voltage peak 
detection is related to amplitude signal noise AN, the mea-
surement of AN result in the prediction of the amplitude 
noise generated by in-phase noise. 

Some of the important ADC performance parameters 
are signal-to-noise ratio SNR, signal-to-noise and distor-
tion ratio SNDR, effective number of bits ENOB, spur 
free dynamic range SFDR, total harmonic distortion THD, 
inter modulation distortion IMD and effective resolution 
bandwidth ERBW [38]. Among these ADC performance 
parameters, ENOB reflects the resolution and the accuracy 
of an ideal ADC circuit under consideration in dynamic 
measurement that is suitable for high sensitivity detection 
analysis in most EIT applications [39,40]. 

The contribution of ANC performance increases ENOB 
performance, and it directly related to SNR measurement. 
The Analog-to-Digital Converter (ADC) performances of 
PSD and the effective number of bit ENOB with NLMS is 
higher than the performances with LMS by SI = 5.7 % and 
ENOB = 15.4 %. Therefore, high image noise in the LMS 
adaptive filter indicates the voltage signal with low SNR. 
Figure. 8 shows the PSD of the voltage noise with LMS 
and NLMS algorithm that it can be obtained by connect-
ing the combination of two ADC inputs to ground through 
a 50 Ω resistor (X = 2 Vp-p, fs = 125 MHz). This noise cor-
responds to the amplitude noise induced by the input stage 
that contains signal instability. As shown in Table I when 
LMS is applied to the system, it presents an additive white 
noise of SI = -139 dBV2/Hz. Meanwhile, NLMS shows 
better performance in term of the additive white noise val-
ue. The additive white noise value of NLMS is SI = -147 
dBV2/Hz. This additive white noise close to the quantiza-
tion of noise floor NF = -164 dBV2/Hz. From PSD plot of 
additive white noise, the level of additive white noise is 
also described for actual ENOB value of ADC. The actual 
ENOB of LMS algorithm is ENOB = 9.7 bit. Meanwhile, 
the actual ENOB of NLMS algorithm increases to ENOB 
= 11.2 bit. 

Table 1. Comparison of ANC algorithms performance

ANC ENOB SI

LMS 9.7 bit -139 dBV2/Hz

NLMS 11.2 bit -147 dBV2/Hz

Figure. 10(a) and (b) show the comparison of the ca-
pability to reduce noise signal between LMS and NLMS 
in terms of PSD analysis of phase signal noise PN = SQ 

[dBrad2/Hz]. While Figure. 11(a) and (b) show the com-

parison of PSD of amplitude signal noise AN = SI [dB/
Hz]. Four voltage levels of input signal X, X = 2 Vp-p to X/5 
= 0.4 Vp-p, were used to investigate the PSD level in order 
to compare the performance between LMS and NLMS. 

As shown in Figure. 10(a) and (b), phase signal noise 
PN are dominated by the additive noise of the input stage, 
although the aperture jitter also occurs. Furthermore, it 
increases proportionally to the input amplitude variance 
1/V0

2. As it can be seen that under this condition, PN is 
dependent on the input amplitude variance 1/V0

2. Additive 
flicker and additive white noise of NLMS at each input 
amplitude level are higher than LMS. 

The PSD of amplitude signal noise SI produces the 
same result that NLMS has higher PSD level as compared 
with LMS as shown in Figure. 10(a) and (b). In terms AN, 
the influence of additive noise by harmonic contributions 
of the signal generator is dominant. The PSD analysis re-
sults of PN and AN are appropriate with the noise model, 
as shown in Eq. (19) and (20). Finally, the capability of 
reducing the noise of NLMS contributes to increasing the 
accuracy of the reconstructed image is shown in Figure. 6 
and increasing the ENOB that reflects the high sensitivity 
detection of FPGA-based EIT system as shown in Table 1.

Figure 10. PSD of phase sensing signal of (a) LMS and (b) 
NLMS in the case homogenous agar condition.

Figure 11. PSD of amplitude sensing signal of (a) LMS 
and (b) NLMS in the case homogenous agar condition.

5. Conclusion

In this paper, we proposed the implementation of adap-
tive noise cancellation (ANC) algorithms, i.e. least means 
square (LMS) and normalized least means square (NLMS) 
algorithm, for FPGA-based EIT system in order to elimi-
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nate the noise signal and to increase the sensitivity detec-
tion by increasing the effective number of bit (ENOB) of 
ADC parameter. This study evaluates the benefit of ANC 
algorithms application on the new field which is the Elec-
trical Impedance Tomography (EIT) system. The ANC of 
LMS and NLMS algorithm work by calculating the trans-
fer function coefficients in order to minimize the error 
signal between the sensing signal Di and the noise signal h 
itself. The ANC of LMS and NLMS algorithm was com-
pared and evaluated through experimental studies. 

The experimental results showed that the implementa-
tion of ANC algorithms onto FPGA-based EIT system:

(1) Implementing ANC algorithms on FPGA-based EIT 
system shows significantly more accurate image recon-
struction to show the inclusion as compared without ANC 
algorithms implementation.

(2) ADC performances of NLMS has SI = -147 dBV2/
Hz and effective number of bit (ENOB) = 11.2 bit.

(3) ADC performances of LMS has SI = -139 dBV2/Hz 
and ENOB = 9 bit. 

Higher ADC performances of NLMS as compared with 
LMS leads to the better image reconstruction performanc-
es in terms of amplitude response (AR), position error (PE), 
resolution (RES), and shape deformation (SD). 

We realize that several ANC algorithms are already 
proposed, not only LMS or NLMS. On this regards, this 
consideration opens a new opportunity to apply the variant 
of ANC algorithms that could be suitable with different 
EIT applications. 
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