The Trade-off in Machine Learning Application for Electrical Impedance Tomography

Marlin Ramadhan Baidillah (Research Center for Electronics, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Tangerang Selatan, 15314, Indonesia)
Pratondo Busono (Research Center for Electronics, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Tangerang Selatan, 15314, Indonesia)

Article ID: 5000

DOI: https://doi.org/10.30564/ese.v4i2.5000

Full Text:

PDF

References


[1] Brown, B.H., 2003. Electrical impedance tomography (EIT): A review. Journal of Medical Engineering & Technology. 27(3), 97-108. DOI: https://doi.org/10.1080/0309190021000059687

[2] Khambampati, A.K., Rahman, S.A., Sharma, S.K., et al., 2022. Nonlinear difference imaging to image local conductivity of single-layer graphene using electrical impedance tomography. IEEE Transactions on Instrumentation and Measurement. DOI: https://doi.org/10.1109/TIM.2022.3147894

[3] Yao, J., Takei, M., 2017. Application of Process Tomography to Multiphase Flow Measurement in Industrial and Biomedical Fields - A Review. IEEE Sensors Journal. pp. 1. DOI: https://doi.org/10.1109/JSEN.2017.2682929

[4] Hahn, G., Just, A., Dittmar, J., et al., 2008. Systematic errors of EIT systems determined by easily-scalable resistive phantoms. Physiological Measurement. 29(6), S163-172. DOI: https://doi.org/10.1088/0967-3334/29/6/S14

[5] Cook, R.D., Saulnier, G.J., Gisser, D.G., et al., 1994. ACT3: a high-speed, high-precision electrical impedance tomograph. IEEE Transactions on Biomedical Engineering. 41(8), 713-722. DOI: https://doi.org/10.1109/10.310086

[6] Baidillah, M.R., Iman, A.A.S., Sun, Y., et al., 2017. Electrical Impedance Spectro-Tomography based on Dielectric Relaxation Model. IEEE Sensors Journal. 17(24), 8251-8262. DOI: https://doi.org/10.1109/JSEN.2017.2710146

[7] Hoyle, B.S., Nahvi, M., 2008. Spectro-tomography - an electrical sensing method for integrated estimation of component identification and distribution mapping in industrial processes. 2008 IEEE Sensors. pp. 807-810. DOI: https://doi.org/10.1109/ICSENS.2008.4716564

[8] Ogawa, R., Baidillah, M.R., Akita, S., et al., 2020. Investigation of physiological swelling on conductivity distribution in lower leg subcutaneous tissue by electrical impedance tomography. Journal of Electrical Bioimpedance. 11(1), 19-25. DOI: https://doi.org/10.2478/joeb-2020-0004

[9] Marashdeh, Q., Warsito, W., Fan, L.S., et al., 2006. An Impedance Tomography system based on ECT sensor. IEEE Sensors Journal. 1(11), 1-7.

[10] Wang, Q., Wang, M., Wei, K., et al., 2017. Visualization of Gas-Oil-Water Flow in Horizontal Pipeline Using Dual-Modality Electrical Tomographic Systems. IEEE Sensors Journal. 17(24), 8146-8156. DOI: https://doi.org/10.1109/JSEN.2017.2714686

[11] Gürsoy, D., Mamatjan, Y., Adler, A., et al., 2011. Enhancing impedance imaging through multimodal tomography. IEEE Transactions on Biomedical Engineering. 58(11), 3215-3224. DOI: https://doi.org/10.1109/TBME.2011.2165714

[12] Choridah, L., Kurniadi, D., Ain, K., et al., 2021. Comparison of Electrical Impedance Tomography and Ultrasonography for Determination of Solid and Cystic Lesion Resembling Breast Tumor Embedded in Chicken Phantom. Journal of Electrical Bioimpedance. 12(1), 63. DOI: https://doi.org/10.2478/joeb-2021-0008

[13] Dy, J.G., Brodley, C.E., Kak, A., et al., 2003. Unsupervised feature selection applied to content-based retrieval of lung images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 25(3), 373-378. DOI: https://doi.org/10.1109/TPAMI.2003.1182100

[14] Rymarczyk, T., Kłosowski, G., Hoła, A., et al., 2022. Optimising the use of Machine learning algorithms in electrical tomography of building Walls: Pixel oriented ensemble approach. Measurement. 188, 110581. DOI: https://doi.org/10.1016/j.measurement.2021.110581

[15] Coxson, A., Mihov, I., Wang, Z., et al., 2022. Machine learning enhanced electrical impedance tomography for 2D materials. Inverse Problems. 38(8), 085007.

[16] Tanaka, K., Prayitno, Y.A.K., Sejati, P.A., et al., 2022. Void fraction estimation in vertical gas-liquid flow by plural long short-term memory with sparse model implemented in multiple current-voltage system. Multiphase Science and Technology. 34(2).

[17] Wu, Y., Jiang, D., Liu, X., et al., 2018. A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control. IEEE Transactions on Biomedical Circuits and Systems. 12(6), 1322-1333. DOI: https://doi.org/10.1109/TBCAS.2018.2878395

[18] Valueva, M.V., Nagornov, N.N., Lyakhov, P.A., et al., 2020. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and Computers in Simulation. 177, 232-243. DOI: https://doi.org/10.1016/j.matcom.2020.04.031

[19] Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation. 9(8), 1735-1780.

[20] Lee, H., Huang, C., Yune, S., et al., 2019. Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction. Scientific Reports. 9(1), 1-9. DOI: https://doi.org/10.1038/s41598-019-51779-5


Refbacks

  • There are currently no refbacks.
Copyright © 2022 Marlin Ramadhan Baidillah, Pratondo Busono


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.