Development of Green Polymer Electrolyte Through Hot Press Method

Nidhi Asthana (National Centre of Experimental Mineralogy and Petrology, University of Allahabad, Allahabad-211002, India)
Mrigank Mauli Dwivedi (National Centre of Experimental Mineralogy and Petrology, University of Allahabad, Allahabad-211002, India)
Kamlesh Pandey (Universisity of Allahabad, Allahabad, India)

Abstract


To develop the green polymeric membrane electrolyte, e-Polycaprolactone (PCL) was used as a host and the Ionic liquid (IL)(1-Ethyl-3-methylimidazolium tosylate) as a dopant. The IL is a source of mobile charges in the polymer electrolyte system. The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation. Formation of nanocomposite system has been ascertained from their XRD pattern. Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique. Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.


Keywords


Green polymer electrolyte; XRD; FTIR; Ionic liquid; Hot press method

Full Text:

PDF

References


[1] R. Augustine, N. Kalarikkal, S. Thomas.. Role of wound dressings in the management of chronic and acute diabetic wounds: A Holistic Approach to Diagnosis and Treatment, Oakville: Apple Academic Press, 2014: 273-314.

[2] S.W. Shalaby, K. J. L. Burg,editors, Absorbable and biodegradable polymers (advances in polymeric materials) Boca Roton: CRC Press, 2003.

[3] E. Piskin, Biodegrdable polymers as biomaterials. J. Biomat Science Polym Ed.,1995, 6; 775-795.

[4] DOI:10.1163/156856295X00175

[5] M. A. Woodruff, D. W. Hutmacher..The return of a forgotten polymer Polycaprolactone in the 21st century. Prog. Polym. Sci., 2010, 35: 1217-1256.

[6] DOI:10.1016/j.progpolymsci.2010.04.002

[7] C.G. Pitt.. Poly--caprolactone and its copolymers. In: Chasin M,Langer R, editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990, 45,71–120.

[8] A.D. Campos,S. M. M. Franchetti.. Braz. Arch. Biol. Techn., 2005, 48: 235-243

[9] DOI:10.1590/S1516-9132005000200010

[10] Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba,Biodegradability of Plastics, Int. J. Mol. Sci., 2009, 10: 3722-3742

[11] DOI:10.3390/ijms10093722

[12] Luciani, V. Coccoli, S. Orsi, L. Ambrosio, P. A. Netti.. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 2008, 29: 4800–4807.

[13] DOI:10.1016/ j.biomaterials.2008.09.007

[14] Marrazzo , E. Di Maio, S. Iannace.. Conventional and nanometric nucleating agents in poly(epsilon-caprolactone) foaming: crystals vs. bubbles nucleation. Polym Eng Sci., 2008, 48: 336–344.

[15] DOI:10.1002/pen.20937

[16] Zein,D.W. Hutmacher,K.C. Tan, S.H. Teoh.. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials,2002, 23: 1169–1185.

[17] DOI:10.1016/S0142-9612(01)00232-0

[18] Y. Wang, M. A. Rodriguez-Perez., R.L. Reis, J. F. Mano.. Thermal and thermo-mechanicalbehaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromolecular Materials and Engineering,2005, 290: 792–801

[19] DOI:10.1002/mame.200500003

[20] L. C. Lins, V. Bugatti, S. Livi, and G. Gorrasi, Ionic Liquid as Surfactant Agent of Hydrotalcite: Influence on the Final Properties of Polycaprolactone Matrix, Ipolymers, 2018, 10: 44-55

[21] DOI:10.3390/polym10010044

[22] V. Guarino, G. Gentile, L. Sorrentino and L. Ambrosio,Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc., 2017.

[23] DOI: 10.1002/0471440264.pst658

[24] C. P. Fonseca, D. S. Rosa, F. Gaboardi, S. Neves. Development of a biodegradable polymer electrolyte for rechargeable batteries. Journal of Power Sources, 2006, 155: 381–384.

[25] DOI: 10.1016/j.jpowsour.2005.05.004

[26] H. J. Woo, S. R. Majid, A. K. Arof.. Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (-caprolactone). Solid State Ionics, 2011, 199–200: 14–20.

[27] DOI: 10.1016/j.ssi.2011.07.007

[28] C. P. Fonseca, S. Neves.. Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. Journal of Power Sources, 2006, 159: 712–716.

[29] DOI: 10.1016/j.jpowsour.2005.10.095

[30] C. P. Fonseca, Jr. F. Cavalcante,F. A. Amaral, C. A. Zani Souza,S.Neves.. Thermal and conduction properties of a PCL-biodegradable gel polymer electrolyte with LiClO4, LiF3CSO3, and LiBF4 salts. International Journal of Electrochemical Science, 2007, 2: 52–63.

[31] B. C. Ng, H. Y. Wong,K. W. Chew,Z. Osman. Development and characterization of poly--caprolactonebased polymer electrolyte for lithium rechargeable battery. International Journal of Electrochemical Science, 2011, 6: 4355–4364.

[32] Pandey, J.K., Chu, W.S.; Lee, C.S., Ahn, S.H. Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. Presented at the International Symposium on Polymers and the Environment: Emerging Technology and Science, Bioenvironmental Polymer Society (BEPS), Vancouver, WA, USA, 2007, 17–20.

[33] Sinha, S.R.; Bousmina, M. Biodegradable polymer/layered silicate nanocomposites. In Polymer Nanocomposites; Mai, Y., Yu, Z., Eds.; Wood head Publishing and Maney Publishing: Cambridge, England, 57-129.

[34] R.D. Rogers, K.R. Seddon, (Ed.). ACS symposium series, American chemical Society Washington D.C, 2002, 818.

[35] A.L. Saroj, R. K. Singh, S. Chandra.. Studies on polymer electrolyte (polyvinyl pyrrolidone, PVP) complexed with ionic liquid: Effect on complexation on thermal stability conductivity and reduction behavior; Mater Sci. Eng. B, 2013, 178: 231-238.

[36] DOI: 10.1016/j.mseb.2012.11.007

[37] Lewandoweski, A Swiderska-Mocek,L. Waliszeweski, M. Galinski.. Lithium redox behavior in N-methyl-n-propylpyrrolidiniumbis (trifluromethanesulphonyl) imide room temperature ionic liquid, J. Power Source, 2012, 197: 292-296.

[38] DOI: 10.1016/j.jpowsour.2011.08.109

[39] K. Nath, A. Kumar.. Swift heavy ion irradiation induced enhancement in electrochemical properties of ionic liquid based PVdF-HFP-layered silicate nanocomposite electrolyte membranes, Journal of Membrane Science, 2014, 453: 192-201.

[40] DOI: 10.1016/j.memsci.2013.10.061

[41] V. Aravindan, P.Vickraman. Characterization of SiO2 and Al2O3 Incorporated PVDF – HFP based Composite Electrolytes with LiPF3(CF3CF2)3. J. App. Poly. Sci. 2008, 108: 1314-1322.

[42] DOI: 10.1002/app.27824

[43] M. J. Koh, H. Y. Hwang,D. J. Kim,H. J., Kim, Y.T., Hong,S.Y. Nam. Preparation andCharacterization of Porous PVdF-HFP/clay Nanocomposite Membranes. J. Mater. Sci. Technol, 2010, 26: 633-638.

[44] DOI: 10.1016/S1005-0302(10)60098-9

[45] B.S. Lalia, K. Yamada,M.S. Hundal, J.S.Park, G.G. Park, Q.Y.Lee, C.S.Kim, S.S. Sekhon. Physicochemical studies of PVdF–HFP-based polymer–ionic liquid composite electrolytes, Appl Phys A, 2009, 96: 661-670.

[46] DOI: 10.1007/s00339-009-5129-y

[47] J. Fuller, A. C. Breda, R.T.Carlin. Ionic liquid-polymer gel electrolytes. J. Electrochem. Soc. 1997, 144: 67-70.

[48] DOI: 10.1149/1.1837555

[49] L. E. Alexander. “X-ray Diffraction Methods in Polymer Science”, edited by R. E. Krieger, Krieger, New York, 1979: 423-424.

[50] P. Scherrer. Bestimmung der Grsse undder InnerenStruktur vonKolloidteilchen Mittels Rntgenstrahlen, Nachrichten von der GesellschaftderWissenschaften, Gttingen, Mathematisch- Physikalische Klasse, 1918, 2: 98-100.

[51] S. Suganya,T. Senthil Ram,B.S. Lakshmi, and V.R. Giridev. Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. J. Appl. Polym. Sci. 2011, 121: 2893-2899.

[52] DOI: 10.1002/app.33915

[53] N. Asthana, M.M. Dwivedi and K. Pandey. Development of PVB-Nano Cellulose based Polymer Electrolyte and correlation of Optical Behavior with Ionic Conductivity. Advances in chemical sciences, 2017, 6: 1-12.

[54] DOI: 10.14355/sepacs.2017.06.001

[55] G. Kister G. Cassanas M. Bergounhen D. Hograu. M. Vert. Structural Characterisation and hydrolytic degradation of solid Co-polymers of d,1-lactide co- caprolactane by Raman Spectroscopy, Polymer, 2000, 41: 925-932.

[56] DOI: 10.1016/S0032-3861(99)00223-2

[57] M.C.C. Ribeiro. Polarization effect in molecular dynamics simulations of glass-formers Ca (NO3)2.nH2O, n=4,6 and 8. J. Chem Phys. 2010, 132: 134512-134522.

[58] DOI: 10.1063/1.3386678

[59] T.Fujsawa, K. Nishikawa and H. Shirota. Comparison of interionic /intermolecular vibrational dynamics between ionic liquids and concentrated electrolyte solution.J. Chem Phys, 2009, 131, 244519: 1-14.

[60] DOI: 10.1063/1.3280028

[61] K.Pandey, M.M. Dwivedi, N.Asthana. Effect of Synthesis Process on Ionic Conduction and Mobility of Flyash Based Polymer Composite Electrolyte, 2014, 3(4): 329-333.

[62] DOI: 10.1166/jap.2014.1151

[63] R.C. Agrawal, Angesh Chandra. Ion transport and electrochemical cell performance studies on hot –press-synthesized Ag+ ion conducting electroactive polymeric membranes : (1-x)PEO:[0.7(0.75AgI:0.25AgCl):0.3MI]. Journal of Physics D, 2007, 40(22): 7024-7031.

[64] DOI: 10.1088/0022-3727/ 40/ 22/024

[65] J.R. MacCallum, C.A.Vincent. Polymer Electrolyte Reviews. Elsevier, London, 1987.



DOI: https://doi.org/10.30564/ese.v1i1.594

Refbacks

  • There are currently no refbacks.
Copyright © 2019 Kamlesh Pandey


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.