Water as the Pore Former in the Synthesis of Hydrophobic PVDF Flat Sheet Membranes for Use in Membrane Distillation

Lebea Nathnael Nthunya (Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa)
Leonardo Gutierrez (Particle and Interfacial Technology Group, Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Guayaquil, Ecuador)
Edward N. Nxumalo (Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa)
Sabelo D. Mhlanga (DST/MINTEK Nanotechnology Innovation Centre, Strijdom Park, Randburg, 2125, Johannesburg, South Africa)

Article ID: 1346

DOI: https://doi.org/10.30564/hsme.v1i2.1346


Although PVDF flat sheet membranes have been widely tested in MD, their synthesis and modifications currently require increased use of green and inexpensive materials. In this study, flat sheet PVDF membranes were synthesized using phase inversion and water as the pore former. Remarkably, the water added in the casting solution improved the membrane pore sizes; where the maximum pore size was 0.58 µm. Also, the incorporation of f-SiO2NPs in the membrane matrix considerably enhanced the membrane hydrophobicity. Specifically, the membrane contact angles increased from 96° to 153°. Additionally, other parameters investigated were mechanical strength and liquid entry pressure (LEP). The maximum recorded values were 2.26 MPa and 239 kPa, respectively. The modified membranes (i.e., using water as the pore former and f-SiO2NPs) were the most efficient, showing maximum salt rejection of 99.9% and water flux of 11.6 LMH; thus, indicating their capability to be used as efficient materials for the recovery of high purity water in MD.


Direct contact membrane distillation; PVDF flat sheet membranes; superhydrophobic silica nanoparticles; water as the pore former

Full Text:



[1] L.N. Nthunya, M.L. Masheane, S.P. Malinga, E.N. Nxumalo, B.B. Mamba, S.D. Mhlanga, Determination of toxic metals in drinking water sources in the Chief Albert Luthuli Local Municipality in Mpumalanga, South Africa, Phys. Chem. Earth, 2017, 100: 94–100.

[2] DOI: 10.1016/j.pce.2017.04.006

[3] A.Y. Hoekstra, M.M. Mekonnen, A.K. Chapagain, R.E. Mathews, B.D. Richter, Global monthly water scarcity: Blue water footprints versus blue water availability, PLoS One, 2012, 7: 1–9.

[4] DOI: 10.1371/journal.pone.0032688

[5] J.N. Edokpayi, E.T. Rogawski, D.M. Kahler, C.L. Hill, C. Reynolds, E. Nyathi, J.A. Smith, J.O. Odiyo, A. Samie, P. Bessong, R. Dillingham, Challenges to sustainable safe drinking water: A case study ofwater quality and use across seasons in rural communities in Limpopo Province, South Africa, Water (Switzerland), 2018, 10: 1–18.

[6] DOI: 10.3390/w10020159

[7] T. Pradeep, Noble metal nanoparticles for water purification: A critical review, Thin Solid Films, 2009, 517: 6441–6478.

[8] DOI: 10.1016/j.tsf.2009.03.195

[9] R.K. Mishra, S.C. Dubey, Fresh water availability and it’s global challenge, Int. J. Eng. Sci. Invent. Res. Dev. 2015, 2: 351–407.

[10] L.N. Nthunya, S. Maifadi, B. Mamba, Bhekie, A.R. Verliefde, S.D. Mhlanga, Spectroscopic determination of water salinity in brackish surface water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa, Water. 2018, 10: 1–13.

[11] DOI: 10.3390/w10080990

[12] L.N. Nthunya, N.P. Khumalo, A.R. Verliefde, B.B. Mamba, S.D. Mhlanga, Quantitative analysis of phenols and PAHs in the Nandoni Dam in Limpopo Province, South Africa: A preliminary study for dam water quality management, Phys. Chem. Earth, Parts A/B/C, 2019: 1–9.

[13] DOI: 10.1016/j.pce.2019.02.003

[14] G.W. Meindersma, C.M. Guijt, A.B. de Haan, Desalination and water recycling by air gap membrane distillation, Desalination, 2006, 187: 291–301.

[15] DOI: 10.1016/j.desal.2005.04.088

[16] B. van der Bruggen, Desalination by distillation and by reverse osmosis — trends towards the future, Membr. Technol, 2003, 2003: 6–9.

[17] DOI: 10.1016/S0958-2118(03)02018-4

[18] L.N. Nthunya, L. Gutierrez, S. Derese, N. Edward, A.R. Verliefde, B. Mamba, S.D. Mhlanga, A review of nanoparticle-enhanced membrane distillation membranes : membrane synthesis and applications in water treatment, Chem. Technol. Biotechnol, 2019, 94: 2757–2771.

[19] DOI: 10.1002/jctb.5977

[20] A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination, 2012, 287: 2–18.

[21] DOI:10.1016/j.desal.2011.08.027

[22] L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van Der Bruggen, How to optimize the membrane properties for membrane distillation: A review, Ind. Eng. Chem. Res. 2016, 55: 9333–9343.

[23] DOI: 10.1021/acs.iecr.6b02226

[24] C. Chiam, R. Sarbatly, Vacuum membrane distillation processes for aqueous solution treatment - A review, Chem. Eng. Process. Process Intensif, 2013, 74: 27–54.

[25] DOI: 10.1016/j.cep.2013.10.002

[26] B.L. Pangarkar, S.K. Deshmukh, V.S. Sapkal, R.S. Sapkal, Review of membrane distillation process for water purification, Desalin. Water Treat. 2016, 57: 1–23.

[27] DOI: 10.1080/19443994.2014.985728

[28] L.D. Tijing, Y.C. Woo, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Fouling and its control in membrane distillation-A review, J. Memb. Sci. 2015, 475: 215–244.

[29] DOI: 10.1016/j.memsci.2014.09.042

[30] E. Curcio, E. Drioli, Membrane distillation and related operations—A review, Sep. Purif. Rev. 2005, 34: 35–86.

[31] DOI: 10.1081/SPM-200054951

[32] Y. Huang, Z. Wang, J. Jin, S. Lin, Novel Janus Membrane for Membrane Distillation with Simultaneous Fouling and Wetting Resistance, Environ. Sci. Technol, 2017, 51: 13304–13310.

[33] DOI: 10.1021/acs.est.7b02848

[34] Y. Zhang, X. Wang, Z. Cui, E. Drioli, Z. Wang, Enhancing wetting resistance of poly (vinylidene fluoride) membranes for vacuum membrane distillation, Desalination, 2017, 415: 58–66.

[35] DOI: 10.1016/j.desal.2017.04.011

[36] Y. Huang, Z. Wang, D. Hou, S. Lin, Coaxially electrospun super-amphiphobic silica-based membrane for anti- surfactant-wetting membrane distillation, J. Memb. Sci. 2017, 531: 122–128. DOI: 10.1016/j.memsci.2017.02.044

[37] L. Eykens, K. De Sitter, C. Dotremont, W. De Schepper, L. Pinoy, B. Van Der Bruggen, Wetting Resistance of Commercial Membrane Distillation Membranes in Waste Streams Containing Surfactants and Oil, Appl. Sci. 2017, 7: 118.

[38] DOI: 10.3390/app7020118

[39] Y. Chul, L.D. Tijing, W. Shim, J. Choi, S. Kim, T. He, E. Drioli, H. Kyong, Water desalination using graphene-enhanced electrospun nano fiber membrane via air gap membrane distillation, J. Memb. Sci. 2016, 520: 99–110.

[40] DOI: 10.1016/j.memsci.2016.07.049

[41] H. Attia, S. Alexander, C.J. Wright, N. Hilal, Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD), Desalination. 2017, 420: 318–329.

[42] DOI: 10.1016/j.desal.2017.07.022

[43] E. Lee, A. Kyoungjin, T. He, Y. Chul, H. Kyong, Electrospun nano fiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation, 2016, 520: 145–154.

[44] DOI: 10.1016/j.memsci.2016.07.019

[45] Y. Liao, R. Wang, A.G. Fane, Engineering superhydrophobic surface on poly (vinylidene fluoride) nano fiber membranes for direct contact membrane distillation, J. Memb. Sci. 2013, 440: 77–87.

[46] DOI: 10.1016/j.memsci.2013.04.006

[47] L.N. Nthunya, L. Gutierrez, S. Derese, B.B. Mamba, Adsorption of phenolic compounds by polyacrylonitrile nano fi bre membranes : A pretreatment for the removal of hydrophobic bearing compounds from water, J. Environ. Chem. Eng. 2019, 7: 103254.

[48] DOI: 10.1016/j.jece.2019.103254

[49] L.N. Nthunya, L. Gutierrez, R. Verliefde, S.D. Mhlanga, Enhanced flux in direct contact membrane distillation using superhydrophobic PVDF nanofibre membranes embedded with organically modified SiO2 nanoparticles, Chem. Technol. Biotechnol, 2019, 94: 2826–2837.

[50] DOI: 10.1002/jctb.6104

[51] L.N. Nthunya, L. Gutierrez, L. Lapeire, K. Verbeken, N. Zaouri, E.N. Nxumalo, B.B. Mamba, A.R. Verliefde, S.D. Mhlanga, Fouling resistant PVDF nanofibre membranes for the desalination of brackish water in membrane distillation, Sep. Purif. Technol. 2019, 228: 115793.

[52] DOI: 10.1016/j.seppur.2019.115793

[53] L.N. Nthunya, L. Gutierrez, N. Khumalo, S. Derese, B.B. Mamba, A.R. Verliefde, S.D. Mhlanga, Superhydrophobic PVDF nanofibre membranes coated with an organic fouling resistant hydrophilic active layer for direct-contact membrane distillation, Colloids Surfaces A Physicochem. Eng. Asp. 2019, 575: 363–372.

[54] DOI: 10.1016/j.colsurfa.2019.05.031

[55] J. Xu, Y.B. Singh, G.L. Amy, N. Ghaffour, Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water, J. Memb. Sci. 2016, 512: 73–82.

[56] DOI: 10.1016/j.memsci.2016.04.010

[57] Y.G. Zmievskii, Determination of critical pressure in membrane distillation process, Pet. Chem, 2015, 55: 308–314.

[58] DOI: 10.1134/S0965544115040118

[59] A. Alkhudhiri, N. Hilal, Air gap membrane distillation: A detailed study of high saline solution, Desalination, 2017, 403: 179–186.

[60] DOI: 10.1016/j.desal.2016.07.046

[61] L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, Characterization and performance evaluation of commercially available hydrophobic membranes for direct contact membrane distillation, Desalination, 2016, 392: 63–73.

[62] DOI: 10.1016/j.desal.2016.04.006

[63] T. Malik, H. Razzaq, S. Razzaque, H. Nawaz, A. Siddiqa, M. Siddiq, S. Qaisar, Design and synthesis of polymeric membranes using water-soluble pore formers : an overview, Polym. Bull, 2018, 76: 4879–4901.

[64] DOI: 10.1007/s00289-018-2616-3

[65] N.N. Gumbi, M. Hu, B.B. Mamba, J. Li, E.N. Nxumalo, Macrovoid-free PES/SPSf/O-MWCNT ultrafiltration membranes with improved mechanical strength, antifouling and antibacterial properties, J. Memb. Sci. 2018, 566: 288–300.

[66] DOI: 10.1016/j.memsci.2018.09.009

[67] L.N. Nthunya, L. Gutierrezb, A.R. Verliefde, S.D. Mhlanga, Enhanced flux in direct contact membrane distillation using superhydrophobic PVDF nanofibre membranes embedded with organically modified SiO2 nanoparticles, J. Chem. Technol. Biotechnol, 2019, 94: 2826–2837.

[68] DOI: 10.1002/jcbt.6104

[69] T.A. Otitoju, A.L. Ahmad, B.S. Ooi, Polyvinylidene fluoride ( PVDF ) membrane for oil rejection from oily wastewater : A performance review, J. Water Process Eng. 14 (2016) 41–59. DOI: 10.1016/j.jwpe.2016.10.011

[70] D. Hou, D. Lin, C. Ding, D. Wang, J. Wang, Fabrication and characterization of electrospun superhydrophobic PVDF- HFP / SiNPs hybrid membrane for membrane distillation, Sep. Purif. Technol. 2017, 189: 82–89.

[71] DOI: 10.1016/j.seppur.2017.07.082

[72] Z.-Q. Dong, X.-H. Ma, Z.-L. Xu, Z.-Y. Gu, Superhydrophobic modification of PVDF–SiO2 electrospun nanofiber membranes for vacuum membrane distillation, RSC Adv. 2015, 5: 67962–67970.

[73] DOI: 10.1039/C5RA10575G

[74] X. Li, X. Yu, C. Cheng, L. Deng, M. Wang, X. Wang, Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation, ACS Appl. Mater. Interfaces. 2015, 7: 21919–21930.

[75] DOI: 10.1021/acsami.5b06509

[76] H. Fan, Y. Peng, Z. Li, P. Chen, Q. Jiang, S. Wang, Preparation and characterization of hydrophobic PVDF membranes by vapor-induced phase separation and application in vacuum membrane distillation, J. Polym. Res. 2013, 134: 1–15.

[77] DOI: 10.1007/s10965-013-0134-4

[78] J.E. Efome, M. Baghbanzadeh, D. Rana, T. Matsuura, C.Q. Lan, Effects of superhydrophobic SiO 2 nanoparticles on the performance of PVDF fl at sheet membranes for vacuum membrane distillation, Desalination, 2015, 373: 47–57.

[79] DOI: 10.1016/j.desal.2015.07.002

[80] J. Zhang, Z. Song, B. Li, Q. Wang, S. Wang, Fabrication and characterization of superhydrophobic poly ( vinylidene fl uoride ) membrane for direct contact membrane distillation, Desalination, 2013, 324: 1–9.

[81] DOI: 10.1016/j.desal.2013.05.018

[82] M. Khayet, T. Matsuura, Preparation and Characterization of Polyvinylidene Fluoride Membranes for Membrane Distillation, Ind. Eng. Chem. Res. 2001, 40: 5710–5718.

[83] DOI: 10.1021/ie010553y

[84] D. Hou, H. Fan, Q. Jiang, J. Wang, X. Zhang, Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation, Sep. Purif. Technol. 2014, 135: 211–222.

[85] DOI: 10.1016/j.seppur.2014.08.023

[86] M. Tomaszewska, Preparation and properties of flat-sheet membranes from poly (vinylidene fluoride) for membrane distillation, Desalination, 1996, 104: 1–11.


  • There are currently no refbacks.
Copyright © 2019 Lebea Nathnael Nthunya

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.