

Figure 1(a): Observed track of CS VIYARU

1.20E+00

1.00E+00

Fig.1(c): Daily variation of K_Z during life cycle of CS 'VIYARU'

Figure 1 (b-k): Day-to-day variations in energy terms and their conversion terms for the CS VIYARU

Figure 2(a): The observed track of VSCS PHAILIN

Figure 2 (b-k): Day-to-day variations in energy terms and their conversion terms for the VSCS PHAILIN

Figure 3(a): Observed track of SCS HELEN

Figure 3 (b-k): Day-to-day variations in energy terms and their conversion terms for the SCS HELEN

Figure 4 (b-k): Day-to-day variations in energy terms and their conversion terms for the VSCS LEHAR

140 0 ● 13/03,12Z ●0

Figure 5(a): Observed Track of VSCS MADI

Figure 5 (b-k): Day-to-day variations in energy terms and their conversion terms for the VSCS MADI

Figure 6 (a-d): Climatology and anomaly of monthly

FIG.8(B): ANOMALY OF AE & AZ FOR APRIL

 Vaars

-3.00E-02

FIG.8(A): ANOMALY OF AE & AZ FOR MARCH

1.50E-0

Figure 7 (a-e): Climatology of energy terms and their conversion terms for Mar-May and Oct-Dec

 Figure 8 (a-f): Anomaly of $A_E\,\&\,A_Z$ for Mar-May and Oct-Dec

FIG.12(C): ANOMALY OF C(AZ,KZ) & C(AZ,AE) FOR MAY

2009 2008 2007 2005

2004

2013

2012

FIG.12(A): ANOMALY OF C(AZ,KZ) & C(AZ,AE) FOR MARCH

C(AZ,KZ) C(KZ,KE)

4.00E-0

3.00E-06

2.00E-0

5 1.00E-0

0.00E+00

-1.00E-0

-2.00E-00

2001

FIG.12(F): ANOMALY OF C(AZ,KZ) & C(AZ,AE) FOR DEC

Figure 9 (a-f): Anomaly of K_E & K_Z for Mar-May and Oct-Dec
Figure 10 (a-f): Anomaly of G_Z & G_E for Mar-May and Oct-Dec
Figure 11 (a-f): Anomaly of C(A_E,K_E) & C(K_Z,K_E) for Mar-May and Oct-Dec
Figure 12 (a-f): Anomaly of C(A_Z,K_Z) & C(A_Z,A_E) for Mar-May and Oct-Dec

Table 1. Annual Frequency of Cyclonic Disturbances (Maximum Wind Speed > 17KT) & Cyclonic

Storms (> 34KT) during 2000-2013.

Year	Cyclonic Disturbance	Cyclonic Storm	Year	Cyclonic Disturbance	Cyclonic Storm
2000	7	4	2007	12	4
2001	6	4	2008	10	4
2002	6	4	2009	8	4
2003	7	3	2010	8	5
2004	10	4	2011	10	2
2005	12	4	2012	5	2
2006	12	3	2013	10	5

Table-2

Mathematical expression of different terms				
Az	$\int_{100}^{P_s} \frac{\overline{T^{*2}}}{2\sigma} dp$			
A _E	$\int_{100}^{P_s} \frac{\overline{T'^2}}{2\sigma} dp$			
K _Z	$\frac{1}{2g} \int_{100}^{P_s} \overline{([u]^2 + [v]^2)} dp$			
K _E	$\frac{1}{2g} \int_{100}^{P_s} \frac{1}{(u'^2 + v'^2)} dp$			
$G(A_Z)$	$\frac{\frac{R_d}{C_p} \oint \frac{[\theta]^* [\dot{Q}]^*}{p\left(-\frac{\partial \overline{\theta}}{\partial p}\right)} dm$			
$G(A_E)$	$\frac{R_d}{C_p} \oint \frac{\theta' \dot{Q}'}{p\left(-\frac{\partial \overline{\theta}}{\partial p}\right)} dm$			
$C(A_E,K_E)$	$-\frac{1}{g}\int_{100}^{P_s}\frac{R}{p}\overline{\omega'T'}dp$			
$C(A_Z,K_Z)$	$-\frac{1}{g}\int_{100}^{P_s}\frac{R}{p}\overline{\omega^*T^*}dp$			
$C(K_Z,K_E)$	$\frac{1}{g}$			

$$\begin{pmatrix}
\int_{100}^{P_{s}} \left[\cos \varphi u'v'\frac{\partial}{a\partial \varphi}\left[\frac{[u]}{\cos \varphi}\right]\right] dp \\
+ \int_{100}^{P_{s}} \left[\overline{v'^{2}\frac{\partial[v]}{a\partial \varphi}}\right] dp + \int_{100}^{P_{s}} \left[\frac{\tan \varphi}{a}u'^{2}[v]\right] dp \\
+ \int_{100}^{P_{s}} \left[\overline{\omega'u'\frac{\partial[u]}{\partial p}}\right] dp + \int_{100}^{P_{s}} \left[\overline{\omega'v'\frac{\partial[v]}{\partial p}}\right] dp \\
\hline
C(A_{Z},A_{E}) - \int_{100}^{P_{s}} \left[\frac{1}{\sigma}v'T'\frac{\partial T^{*}}{a\partial \varphi} + \frac{1}{\sigma}\omega'T'\frac{\partial T^{*}}{\partial p}\right] dp
\end{cases}$$