On the Formation of a Bead Structure of Spark Channels during a Discharge in Air at Atmospheric Pressure

Victor Tarasenko (Institute of High Current Electronics, Siberian Branch (SB), Russian Academy of Sciences (RAS), 2/3 Akademicheskii Ave., Tomsk, 634055, Russia)
Dmitry Beloplotov (Institute of High Current Electronics, Siberian Branch (SB), Russian Academy of Sciences (RAS), 2/3 Akademicheskii Ave., Tomsk, 634055, Russia)
Alexander Burachenko (Institute of High Current Electronics, Siberian Branch (SB), Russian Academy of Sciences (RAS), 2/3 Akademicheskii Ave., Tomsk, 634055, Russia)
Evgenii Baksht (Institute of High Current Electronics, Siberian Branch (SB), Russian Academy of Sciences (RAS), 2/3 Akademicheskii Ave., Tomsk, 634055, Russia)

Abstract


The conditions for the formation of spark channels with a bead structure in an inhomogeneous electric field at different polarities of voltage pulses are studied. Voltage pulses with an amplitude of up to 150 kV and a rise time of ≈1.5 µs were applied across a 45-mm point-to-plane gap. Under these conditions, spark channels consisting of bright and dim regions (bead structure) were observed. It is shown that when current is limited, an increase in the rise time and the gap length does not affect the formation of the bead structure. It was found that an increase in the amplitude of voltage pulses leads to an increase in the length of beads. The appearance of the bead structure is more likely at negative polarity of the pointed electrode. The formation of spark channels was studied with a four-channel ICCD camera. 


Keywords


Discharge in air; Formation of sparks; Bead structure; ICCD camera; Point-to-plane gap; Bead lightning

Full Text:

PDF

References


[1] Chanrion, O., Neubert, T., Mogensen, A., Yair, Y., Stendel, M., Singh, R., & Siingh, D. (2017). Profuse activity of blue electrical discharges at the tops of thunderstorms. Geophysical Research Letters, 44(1), 496-503. https://doi.org/10.1002/2016GL071311

[2] Füllekrug, M., Mareev, E. A., & Rycroft, M. J. (Eds.). (2006). Sprites, elves and intense lightning discharges (Vol. 225). Springer Science & Business Media. https://www.springer.com/gp/book/9781402046278

[3] Zeng, R., Zhuang, C., Zhou, X., Chen, S., Wang, Z., Yu, Z., & He, J. (2016). Survey of recent progress on lightning and lightning protection research. High Voltage, 1(1), 2-10. http://dx.doi.org/10.1049/hve.2016.0004

[4] Lu, W., Qi, Q., Ma, Y., Chen, L., Yan, X., Rakov, V. A., ... & Zhang, Y. (2016). Two basic leader connection scenarios observed in negative lightning attachment process. High voltage, 1(1), 11-17. https://doi.org/10.1049/hve.2016.0002

[5] Pasko, V. P., & George, J. J. (2002). Three‐dimensional modeling of blue jets and blue starters. Journal of Geophysical Research: Space Physics, 107(A12). https://doi.org/10.1029/2002JA009473

[6] Chou, J. K., Hsu, R. R., Su, H. T., Chen, A. B. C., Kuo, C. L., Huang, S. M., ... & Wu, Y. J. (2018). ISUAL‐Observed Blue Luminous Events: The Associated Sferics. Journal of Geophysical Research: Space Physics, 123(4), 3063-3077. https://doi.org/10.1002/2017JA024793

[7] Liu, F., Zhu, B., Lu, G., Qin, Z., Lei, J., Peng, K. M., ... & Ma, M. (2018). Observations of blue discharges associated with negative narrow bipolar events in active deep convection. Geophysical Research Letters, 45(6), 2842-2851. https://doi.org/10.1002/2017GL076207

[8] Barry J.D. Ball Lightning and Bead Lightning. New York: Plenum Press, 1980. https://www.springer.com/gp/book/9780306402722

[9] M.A. Uman, and V.A. Rakov, Lightning Physics and Effects, Cambridge University Press, 2003. https://doi.org/10.1007/s10712-004-6479-9

[10] Vernon Cooray, An Introduction to Lightning, Springer, 2015. https://doi.org/10.1007/978-94-017-8938-7

[11] G.O. Ludwig, and M.M.F. Saba, “Bead lightning formation,” Phys. Plasmas 12 (2005) 093509. http://dx.doi.org/10.1063/1.2048907

[12] V.F. Tarasenko, D.V. Beloplotov, E.H. Baksht, A.G. Burachenko, and M.I. Lomaev, “Analogue of bead lightning in a pulse discharge iniated by runaway electrons in atmospheric pressure air,” Atmospheric and Oceanic Optics 28 (2015) 591. https://doi.org/10.1134/S1024856015060160

[13] S.P.A. Vayanganie, V. Cooray, M. Rahman, P. Hettiarachchi, O. Diaz, and M. Fernando, “On the occurrence of ‘bead lightning’ phenomena in long laboratory sparks,” Phys. Lett. A, 380 (2016) 816. https://doi.org/10.1016/j.physleta.2015.12.039

[14] V.F. Tarasenko, and D.V. Beloplotov, “Formation of Miniature Analogs of Bead Lightning in Nitrogen and Air during Pulsed Discharge in Nonuniform Electric Field,” Atmospheric and Oceanic Optics 31 (2018) 400. https://doi.org/10.1134/S1024856018040164

[15] Beloplotov, D. V., & Tarasenko, V. F. (2019). Formation of a small ‘bead lightning’in a half-microsecond discharge in air. Physics Letters A, 383(4), 351-357. https://doi.org/10.1016/j.physleta.2018.11.004

[16] D. V. Beloplotov, A. M. Boichenko, and V. F. Tarasenko Beaded Discharges Formed under Pulsed Breakdownsof Air and Nitrogen // Plasma Physics Reports, 2019, Vol. 45, No. 4, pp. 387–396. https://doi.org/10.1134/S1063780X19030012

[17] Kochkin, P. O., Nguyen, C. V., van Deursen, A. P., & Ebert, U. (2012). Experimental study of hard x-rays emitted from metre-scale positive discharges in air. Journal of Physics D: Applied Physics, 45(42), 425202. https://doi.org/10.1088/0022-3727/45/42/425202

[18] Kochkin, P., Köhn, C., Ebert, U., & van Deursen, L. (2016). Analyzing x-ray emissions from meter-scale negative discharges in ambient air. Plasma Sources Science and Technology, 25(4), 044002. https://doi.org/10.1088/0963-0252/25/4/044002

[19] V.F. Tarasenko, G.V. Naidis, D.V. Beloplotov, I.D. Kostyrya, and N.Yu. Babaeva “Formation of Wide Streamers during a Subnanosecond Discharge in Atmospheric-Pressure Air,” Plasma Phys. Rep. 44(8) (2018) 746. https://doi.org/10.1134/S1063780X18080081

[20] Tarasenko, V. F., Sosnin, E. A., Skakun, V. S., Panarin, V. A., Trigub, M. V., & Evtushenko, G. S. (2017). Dynamics of apokamp-type atmospheric pressure plasma jets initiated in air by a repetitive pulsed discharge. Physics of Plasmas, 24(4), 043514. https://doi.org/10.1063/1.4981385

[21] Runaway Electrons Preionized Diffuse Discharges. / Editors: V.F. Tarasenko. Published by Nova Science Publishers, Inc. New York. USA. 2014. 598 p.

[22] Generation of runaway electron beams and X-rays in high pressure gases, Volume 1: / Editors: V.F. Tarasenko. Published by Nova Science Publishers, Inc. New York. USA. 2016. 405 p.

[23] Generation of runaway electron beams and X-rays in high pressure gases, Volume 2: / Editors: V.F. Tarasenko. Published by Nova Science Publishers, Inc. New York. USA. 2016. 333 p.

[24] Victor Tarasenko, Dmitry Beloplotov, Mikhail Lomaev, Dmitry Sorokin. “E-beam generation in discharges initiated by voltage pulses with a rise time of 200 ns at an air pressure of 12.5–100 kPa” 2019 Plasma Sci. Tech. 21 (2019) 044007 (9pp) https://doi.org/10.1088/2058-6272/ab079b

[25] Zhang, C., Tarasenko, V. F., Shao, T., Beloplotov, D. V., Lomaev, M. I., Wang, R., ... & Yan, P. (2015). Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons. Physics of Plasmas, 22(3), 033511. https://doi.org/10.1063/1.4914930

[26] Babich, L. P. (2003). High-energy phenomena in electric discharges in dense gases: Theory, experiment, and natural phenomena. Futurepast Incorporated.

[27] D.V. Beloplotov, M.I. Lomaev, D.A. Sorokin, V.F. Tarasenko, Displacement current during the formation of positive streamers in atmospheric pressure air with a highly inhomogeneous electric field, Phys. Plasmas 25 (2018) 083511. https://doi.org/10.1063/1.5046566

[28] Beloplotov, D. V., Tarasenko, V. F., Sorokin, D. A., & Lomaev, M. I. (2017). Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a nonuniform electric field. JETP Letters, 106(10), 653-658. https://doi.org/10.1134/S0021364017220064

[29] Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).

[30] Kochkin, P., Van Deursen, A. P., De Boer, A., Bardet, M., & Boissin, J. F. (2015). In-flight measurements of energetic radiation from lightning and thunderclouds. Journal of Physics D: Applied Physics, 48(42), 425202. https://doi.org/10.1088/0022-3727/48/42/425202

[31] Bazelyan, E. M., & Raizer, Y. P. (2000). Lightning physics and lightning protection. CRC Press.



DOI: https://doi.org/10.30564/jasr.v3i1.1858

Refbacks

  • There are currently no refbacks.
Copyright © 2020 Author(s)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.