Perceiving the Trend of Terrestrial Climate Change during the Past 40 Year (1978–2018)

Asheesh Bhargawa (University of Lucknow, India)
A.K. Singh (University of Lucknow)


In past few decades, climate has manifested numerous shifts in its trend. Various natural and anthropogenic factors have influenced the dynamics and the trends of climate change at longer time scale. To understand the long term climate fluctuations, we have analyzed forty years (1978 - 2018) data of ten climatic parameters that are responsible to influence the climate dynamics. The parameters involved in the present study are total solar irradiance (TSI), ultra violet (UV) index, cloud cover, carbon dioxide (CO2) abundances, multivariate (ENSO) index, volcanic explosivity index (VEI), global surface temperature (GST) anomaly, global sea ice extent, global mean sea level and global precipitation anomaly. Using the above mentioned climate entities; we have constructed a proxy index to study the quantitative measure of the climate change. In this process these indicators were aggregated to a single proxy index as global climate index (GCI) that has measured the strength of present climate change in semblance with the past natural variability. To construct GCI, the principal component analysis (PCA) has been used on yearly based data for the period 1978 - 2018. Actually PCA is a statistical tool with which we can reduce the dimensionality of the data and it retains most of the variation in the new data set. Further, we have confined our study to natural climate drivers and anthropogenic climate drivers. Our result has indicated that the strongest climate change has been occurred globally by the end of the year 2018 in comparison to late 1970’s natural variability.


Principal component analysis; total solar irradiance (TSI) ; cloud cover; CO2 abundance; global surface temperature (GST) anomaly; global climate index (GCI).

Full Text:



L. M. Andreassen, H. Elvehøy, B. Kjøllmoen, R. V. Engeset, N. Haakensen. Glacier mass-balance and length variation in Norway. Ann. Glaciol., 2005, 42: 317- 325. (

M. N. Efstathiou, C. A. Varotsos. Intrinsic properties of Sahel precipitation anomalies and rainfall. Appl. Climatol., 2012, 109: 627–633. (

IPCC, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Cambridge University Press, Cambridge, UK, 2012, pp. 555.

K. C. Busch, J. A. Henderson, K. T. Stevenson. Broadening Epistemologies and Methodologies in Climate Change Education Research. Environmental Education Research, 2018 25: 955–971. (

M. N. Efstathiou, C. A. Varotsos. On the 11 year solar cycle signature in global total ozone dynamics. Meteorol. Appl. 2013, 20: 72–79. (

R. Blackport, P. Kushner. The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4. J. Clim., 2016, 29: 401–417. (

D. Burçkin, A. Umut, Y. Özdem-Yilmaz, N. Öztürk, D. Sönmez. A model for pre-service teachers' climate change awareness and willingness to act for pro-climate change friendly behavior: adaptation of awareness to climate change questionnaire. Int. Res. Geograph. Env. Edu., 2015, 24: 184-200.

D. Notz, J. Stroeve. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 2016. 354: 747–750.

J. M. Arblaster, G. A. Meehl, D. J. Karoly. Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophys. Res. Lett., 2011, 38: L02701. (

J. E. Walsh. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Glob. Planet. Chang., 2014. 117: 52–63. (

R. O. Weber, P. Talkner. Spectra and correlations of climate data from days to decades. J. Geophys. Res., 2001, 106: 20131–20144. (

Y. Xia, Y., Huang, Y., Hu. On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone. J. Geophys. Res. Atmos., 2018, 123: 730–739. (

J. Lean, D. Rind. Evaluating sun–climate relationships since the Little Ice Age. J. Atmos. Sol. Terr. Phys., 1999, 61: 25–36. (

A. Bhargawa, A. K. Singh. Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Adv. Spa. Res., 2019. 64: 271-277. (

C. E. Iles, G. C. Hegerl. The global precipitation response to volcanic eruptions in the CMIP5 models. Environ. Res. Lett., 2014, 09: 104012. (

S. Driscoll, A. Bozzo, L. J. Gray, A. Robock, G. Stenchikov. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res., 2012, 117: D17105. (

C. L. Parkinson, D. J. Cavalieri. Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 2012, 06: 871–880. (

T. Vihma. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys., 2014, 35: 1175–1214. (

T. P. Hughes, A. H. Baird, D. R. Bellwood, et al., Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science, 2003, 301: 929–933. (

M. Ringnér. What is principal component analysis. Nature Biotechnology, 2008, 26: 303–304. (

I. T. Jolliffe. Principal Component Analysis. Springer, New York, 2002.

R. W. Preisendorfer, C. D. Mobley. Principal component analysis in meteorology and oceanography, Elsevier, Amsterdam, 1988.

IPCC, Chapter 3: Impacts of 1.5ºC global warming on natural and human systems. In: Global Warming of 1.5 °C. Special Report of the Intergovernmental Panel on Climate Change, 2018.

W. Herschel. Observation tending to investigate the nature of the sun. Philos. Trans. R. Soc., 1801, 01: 265-318.

D. V. Hoyt, K. H. Schatten. The Role of the Sun in Climate Change. Oxford University Press, Oxford, 1997.

D. L. Damian, Y. J. Matthews, T. A. Phan, G. M. Halliday. An action spectrum for ultraviolet radiation‐induced immunosuppression in humans. Brit. J. Dermatol., 2011, 164: 657–659. (

J. D. Haigh. The Impact of Solar Variability on Climate. Science, 1996, 272: 981-984. (

A. Bhargawa, M. Yakub, A. K. Singh. Repercussions of solar high energy protons on ozone layer during super storms. Res. Astron. Astrophys., 2019, 19: 02. (

J. M. Wilcox. Solar activity and the weather. J. Atmospheric Sol. Terr. Phys., 1975, 37: 237-256. (

R. E. Dickinson. solar variability and the lower atmosphere. Bull. Am. Meteorol. Soc., 1975, 56: 1240–1248. (<1240:SVATLA>2.0.CO;2)

R. Markson, M. Muir. Solar Wind Control of the Earth's Electric Field. Science, 1980, 206: 979. ( 0.1126/science.208.4447.979)

B. W. Tinsley, G. W. Deen. Apparent tropospheric response to MeV‐GeV particle flux variations: A connection via electrofreezing of supercooled water in high‐level clouds? J. Geophys. Res., 1991, 96: 22283-22296. (

E. Bard, M. Frank. Climate change and solar variability: What's new under the sun? Earth Planetary Sci. Lett., 2006, 248: 01-14. (

C. D. Camp, K. K. Tung. Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett., 2007, 34: L14703. (

S. Madronich, R. L. McKenzie, L. O. Björn, M. M. Caldwell. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photochem. Photobiol. B., 1998, 46: 05–19. (

A. K. Singh, A. Bhargawa. Atmospheric burden of ozone depleting substances (ODSs) and forecasting ozone layer recovery. Atmospheric Pollution. Research, 2019, 10: 802-807. (

P. Gies, C. Roy, J. Javorniczky, S. Henderson, L. Lemus-Deschamps, C. Driscoll. Global Solar UV Index: Australian Measurements, Forecasts and Comparison with the UK. Photochem. Photobiol., 2004, 79: 32–39. (

S. M. Kang, L. M. Polvani, J. C. Fyfe, M. Sigmond. Impact of Polar Ozone Depletion on Subtropical Precipitation. Science, 2011, 332: 951–954. (

J. T. Kiehl. On the Observed Near Cancellation between Longwave and Shortwave Cloud Forcing in Tropical Regions. J. Clim., 1994, 07: 559-565. (<0559:OTONCB>2.0.CO;2)

D. L. Hartmann, L. A. Moy, Q. Fu. Tropical Convection and the Energy Balance at the Top of the Atmosphere. J. Clim., 2001, 14: 4495-4511. (<4495:TCATEB>2.0.CO;2)

J. Herman, M. T. DeLand, L. K. Huang, G. Labow, D. Larko, et al., A net decrease in the Earth's cloud, aerosol, and surface 340 nm reflectivity during the past 33 yr (1979–2011). Atmospheric Chem. Phys., 2012, 13: 8505-8524. (

R. Eastman, S. G. Warren, C. J. Hahn. A 39-Yr Survey of Cloud Changes from Land Stations Worldwide 1971–2009: Long-Term Trends, Relation to Aerosols, and Expansion of the Tropical Belt. J. Clim., 2013, 26: 1286-1303. (

P. R. Goode, E. Pallé. Shortwave forcing of the Earth's climate: Modern and historical variations in the Sun's irradiance and the Earth's reflectance. J. Atmospheric Sol. Terr. Phys., 2007, 69: 1556-1568. (

A. A. Lacis, G. A. Schmidt, D. Rind, R.A. Ruedy. Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Science, 2010, 330: 356-359. (

M. Collins, S. I. An, W. Cai, A. Ganachaud, et al., The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 2010, 3: 391-397. (

W. Cai, A. Santoso, G. Wang, S. W. Yeh, S. I. An, K. M. Cobb, et al., ENSO and greenhouse warming. Nat. Clim. Chan., 2015, 5: 849-859. (

C. T. Y. Chung, S. B. Power, J. M. Arblaster, H. A. Rashid, G. L. Roff. Nonlinear precipitation response to El Nino and global warming in the Indo-Pacific. Clim. Dynam., 2014, 42: 1837-1856. (

IPCC, Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.

R. Batehup, S. McGregor, A. J. E. Gallant. The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework. Climate of the Past, 2015, 11: 1733. (

E. A. Barnes, S. Solomon, L. M. Polvani. Robust Wind and Precipitation Responses to the Mount Pinatubo Eruption, as Simulated in the CMIP5 Models. J. Climate, 29: 4763-4778. (

N. P. Gillett, A. J. Weaver, F. W. Zwiers, M. F. Wehner. Detection of volcanic influence on global precipitation. Geophys. Res. Lett., 2004, 31: L12217. (

F. Liu, J. Chai, B. Wang, J. Liu, et al., Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep., 2016, 6: 24331. (

J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea. Global temperature change. Proc. Natl. Acad. Sci. USA, 2006, 03: 14288–14293. (

A. Dai, J. Fyfe, S. Xie, et al., Decadal modulation of global surface temperature by internal climate variability. Nature Clim. Change, 2015, 5: 555–559. (

X. Yun, B. Huang, J. Cheng, et al., A new merge of global surface temperature datasets since the start of the 20th century. Earth Syst. Sci. Data, 2019, 11: 1629–1643. (

J. A. Church, J. M. Gregory, P. Huybrechts, et al., Climate Change: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel, 2001.

J. A. Church, N. J. White. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophy., 2011, 32: 04-16. (

C. L. Parkinson, D. J. Cavalieri, P. Gloersen, et al., Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res., 1999, 104: 20837–20856. (

R. Kwok, D. A. Rothrock. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 2009, 36: L15501. (

J. C. Stroeve, M. C. Serreze, M. M. Holland, et al., The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clima. Change, 2012, 110: 1005–1027. (

J. A. Screen, I. Simmonds, C. Deser, R. Tomas. The Atmospheric Response to Three Decades of Observed Arctic Sea Ice Loss. J. Climate, 2013, 26: 1230–1248. (

H. J. Zwally, J. C. Comiso, C. L. Parkinson, et al., Variability of Antarctic sea ice 1979–1998. J. Geophys. Res., 2002, 107: 3041. (

J. Turner, J. S. Hosking, T. Phillips, G. J. Marshall. Temporal and spatial evolution of the Antarctic sea ice prior to the September 2012 record maximum extent.Geophys. Res. Lett., 2013, 40: 5894–5898. (

J. E. Walsh. MELTING ICE: What Is Happening to Arctic Sea Ice, and What Does It Mean for Us? Oceanography, 2013, 26: 171–181.

W. S. Zhang, S. Lin, X. M. Jiang. Influences of natural variability and anthropogenic forcing on the extreme 2015 accumulated cyclone energy in the Western North Pacific. Bull. Amer. Meteor. Soc., 2016, 97: S131-S135.



  • There are currently no refbacks.
Copyright © 2021 Asheesh Bhargawa, A.K. Singh Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.