Effect of Varying Aerosol Concentrations and Relative Humidity on Visibility and Particle Size Distribution in Urban Atmosphere

Ummulkhair Abdulkarim (Department of Physics, Sa’adatu Rimi College of Education Kano, P. M. B. 3218, Kano State, Nigeria)
Bello Tijjani (Department of Physics, Bayero University Kano, P.M.B. 3011, Kano State, Nigeria)


Atmospheric aerosol concentrations have been found to change constantly due to the influence of source, winds and human activities over short time periods. This has proved to be a constraint to the study of varied aerosol concentrations in urban atmosphere alongside changing relative humidity and how it affects visibility and aerosol particle size distribution. In this research simulation was carried out using Optical Properties of Aerosols and Clouds (OPAC 4.0) average concentration setup for relative humidity (RH) 0-99% at visible wavelength 0.4-0.8 μm to vary the concentrations of three aerosol components: WASO (Water-soluble), INSO (Insoluble) and SOOT. The Angstrom exponents (α), the curvatures (α2) and atmospheric turbidities (β) were obtained from the regression analysis of Kaufman’s first and second order polynomial equations for visibility. The research determined the mean exponent of the aerosol size growth curve (µ) from the effective hygroscopic growth (geff) and the humidification factors (γ) from visibility enhancement f (RH, λ). The mean exponent of aerosol size distributions (υ) was determined from µ and γ. The results showed that with varied WASO, INSO and SOOT concentrations respectively at different RH, aerosol particle size distributions showed bimodal characteristics with dominance of fine mode particles. Hazy atmospheric conditions prevailed with increasing turbidity.


Aerosol concentration; Humidification factor; Hygroscopic growth; Particle size distribution; Visibility enhancement

Full Text:



[1] Wu, D., Li, X. X., Ying, C. C., Lau, Z. M., Huang, A. K. H., Deng, J., X. J.,&Bi, X. Y. (2005): An extremely low visibility event over the Guangzhou region: A case study, Atmos. Environ., 39(35), 6568-6577. https://doi. org/10.1016/j.atmosenv.2005.07.061.

[2] Bret, A. S., Rudolf, B. H., Stefan. R. F, & William E.W., (2001). Haze trends over the United States, 1980-1995. Journal of Atmosphere and Environment. 35: 5205-5210. https://doi.org/10.1016/S1352-2310 (01)00317-X.

[3] Chan, Y.C., Simpson, R.W., Mctainsh, G. H., Vowles, P. D., Cohen D. D.,& Bailey, G. M., (1999). Source Apportionment of Visibility Degradation Problems in Brisbane (Australia) Using the Multiple Linear Regression Techniques. Journal of Atmosphere and Environment. 33: 3237-3250. https://doi.org/10.1016/ S1352-2310(99)00091-6.

[4] Doylem, M. & Dorling S., (2002). Visibility Trends in the UK 1950-1997. Journal of Atmosphere and Environment. 36: 3163-3172. https://doi.org/10.1016/ S1352-2310(02)00248-0.

[5] Kotchenruther, R. A., Hobbs, P.V., Hegg, D. A., (1999). Humidification factors for atmospheric aerosol off the midAtlantic coast of United States. J. Geophys. Res. 104 (D2), 2239-2251. https://doi.org/10.1029/ 98JD01751.

[6] Yoon, S.C., Kim, J., (2006). Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia. Atmos. Environ. 40 (23), 4328-4338 https://doi.org/10.1016/j.atmosenv.2006.03.036.

[7] Chan, C. K., & Yao, X. H., (2008): Air pollution in mega cities in China, Atmos. Environ., 42, 1-42. https://doi.org/10.1016/j.atmosenv.2007.09.003.

[8] Deng, X. J., Tie X. X., Wu, D., Zhou, X. J., Bi, X.Y., Tan H. B., Li F., & Jiang C. L., (2008): Long- Term Trend of Visibility and Its Characterizations in the Pearl River Delta (PRD) Region, China. Journal of Atmosphere and Environment .42(7), 1424-1435. https:// doi.org/10.1016/j.atmosenv.2007.11.025.

[9] Massoli, P., Bates, T. S., Quinn, P.K., Lack, D.A., Baynard, T., Lerner, B.M., TuckerS.C.,,Brioude, J., Stohl, A., Williams, E.J., (2009). Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing. J. Geophys. Res. 114, D00F07. https://doi.org/10.1029/ 2008JD011604.

[10] Tijjani B. I. (2013). The Effect of Soot and Water Soluble on the Hygroscopicity of Urban Aerosols. Advances in Physics Theories and Applications. www.iiste.org ISSN 2224-719X (Paper) ISSN 2225- 0638, Vol.26.

[11] Cheng, Y. F., Wiedensohler A., Eichler H., Heintzenberg J., Tesche M., Ansmann A., Wendisch M., Su H.,Althausen D.,HerrmannH., Gnauk T., Bruggemann E., Hu M., Zhang Y.H., (2008). Relative Humidity Dependence of Aerosol Optical Properties and Direct Radiative Forcing in The Surface Boundary Layer at Xinken in Pearl River Delta of China: An Observation Based Numerical Study. Journal of Atmosphere and Environment. 42, 6373-6397. https:// doi.org/10.1016/j.atmosenv.2008.04.009.

[12] Koschmieder, H., (1972): Theorie der horizontalenSichtweite, BeiträgezurPhysik der freienAtmosphäre, Meteorol. Z., 12, 33-55.

[13] Liu et al. X. (2012). ‘Aerosol Hygroscopicity and Its Impact on Atmospheric Visibility and Radiative Forcing in Guangzhou during the 2006 PRIDE-PRD Campaign’. Atmospheric Environment 60: 59-67. https://doi.org/10.1016/j.atmosenv.2012.06.016.

[14] Liu, X.G., Zhang, Y.H., Jung, J.S., Gu, J.W., Li, Y.P., Guo, S., Chang, S.Y., Yue, D., Lin, P., Kim, Y.J., Hu, M., Zeng, L.M.,Zhu, T., (2009). Research on aerosol hygroscopic properties by measurement and model during the 2006 CARE Beijing campaign.J. Geophys. Res. 114, D00G16.

[15] Liu, X.G., Zhang, Y.H., Wen, M.T., Wang, J.L., Jung, J.S., Chang, S.Y., Hu, M., Zeng, L.M., Kim, Y.J., (2010).A closure study of aerosol hygroscopic growth factor during the 2006 PRD campaign. Adv. Atmos. Sci..

[16] Reid, J.S., Jayaraman, A., Kiehl, J.T., Krishnamurti, T.N.&Lubin, D. (1999). Physical, chemical and optical regional hazes dominated by smoke in Brazil. Journal of Geophysical Research, 103: 32059-32080. https://doi.org/10.1029/98JD00458.

[17] Sjogren, S. et al. (2007). ‘Hygroscopic Growth and Water Uptake Kinetics of Two-Phase Aerosol Particles Consisting of Ammonium Sulfate , Adipic and Humic Acid Mixtures’. 38: 157-71.

[18] Tijjani, B. I. Aliyu, A. & Shaaibu F. (2014b). ‘The Effect of Relative Humidity on Continental Average Aerosols’. Open Journal of Applied Sciences, 4, 399- 423 (6) 10.4236/ojapps.2014.47038.

[19] King, M.& Byrne, D. (1976). A method for inferring total ozone content from the spectral variation of total optical depth obtained with a solar radiometer. Journal of Geophysical Research, 33: 3251-3254. https://doi.org/10.1175/1520-0469(1976)0332.0.CO;2.

[20] Yuan, C. S., Lee, C. G, Chang J. C. & Yuan C. (2005) Effects of Aerosol Species on Atmospheric Visibility in Kaohsiung City, Taiwan. Journal of Air & Waste Management Association.55:1031-1041 https://doi.or g/10.1080/10473289.2005.10464683.

[21] Kim, Jiyoung, Soon-chang Yoon, Anne Jefferson, and Sang-woo Kim. (2006). ‘Aerosol Hygroscopic Properties during Asian Dust, Pollution , and Biomass Burning Episodes at Gosan , Korea in April 2001. Atmos. Environ., 40, 1550-1560.

[22] Ångström A. (1961). Techniques of Determining the Turbidity. Tellus, 13(2): 214-223. https://doi. org/10.3402/tellusa.v13i2.9493.

[23] Galadanci, G.S.M., Tijjani, B.I., Abubakar, A.I., Koki, F. S., Adamu, I. D., Nura, A. M., Saleh, M.,&Uba, S. (2015): The Effect of Kelvin Effect On The Equilibrium Effective Radii And Hygroscopic Growth of Atmospheric Aerosols. IISTE- Journal of Natural Sciences Research, Vol.5, No.22, 2015 p96-111. https://core.ac.uk/download/pdf/ 234656185.pdf.

[24] Kasten F. (1969). Visibility forecast in the phase of pre-condensation. Tellus, XXI, 5, 631-635. https://doi.org/10.1111/j.2153-3490.1969.tb00469.x.

[25] Kaufman Y. (1993). Aerosol optical thickness and path radiance.Journal of Geophysical research 98 (D2) 2677-2692. https://doi.org/10.1029/ 92JD02427.

[26] Tang, I.N., Munkelwitz, H.R., (1994). Water activities, densities, and refractive indices of aqueous sulfate and sodium nitrate droplets of atmospheric importance.J. Geophys. Res. 99 (D9), 18,801-18,808. https://doi.org/10.1029/94JD01345.

[27] Tijjani, B. I., Sha’aibu F.&Aliyu. A. (2014a).The Effect of Relative Humidity on Maritime Polluted Aerosols.International Journal of Pure and Applied Physics Vol.2, No.1, Pp.9-36.

[28] Eck, T. F., Holben, B. N., Ward,D. E., Dubovic, R. J. S., Smirnov, A., Mukelabai M. M., Hsu, N. C., O’ Neil N. T.,&Slutsker I. (2001) Characterization of The Optical Properties of Biomass Burning Aerosols in Zambia During the 1997 ZIBBEE Field Campaign, Journal of Geophysics Research, 106(D4), 3425-3448. https://doi.org/10.1029/2000JD900555.

[29] Moln´ar, A., M´esz´aros, E., Imre, K., &R¨ull, A. (2008): Trends in visibility over Hungary between 1996 and 2002, Atmos. Environ., 42, 2621-2629. https://doi.org/10.1016/j.atmosenv.2007.05.012.

[30] Frankenberger, E. (1967) Beitr. Phys. Atmos. 37, 183.

[31] Zieger, P., Fierz-Schmidhauser,R., Poulain, L., Müller, T., Birmili, W., Spindler, G., Wiedensohler, A.,Baltensperger, U., &Weingartner, E. (2013): Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609-10631. https://doi.org/10.5194/acp13-10609-2013.

[32] Quinn, P. K.,et al. (2005) , Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization, Geophys. Res. Lett., 32, L22809,. https://doi. org/10.1029/2005GL024322.

[33] Junge, C. E. (1958). Atmospheric Chemistry. Advances in geophysics (Vol. 4, pp 1-108). Elsevier. https://doi.org/10.1016/S0065-2687(08)60484-7.

[34] TangI. N. (1996).Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research 101 (D14), 19,245- 19,250 https://doi.org/10.1029/96JD03003.

[35] Hess, M., Koepke, P., and Schult, I. (1998): Optical properties of aerosols and clouds: The software package OPAC, B. Am. Meteor. Soc., 79, 831-844.

DOI: https://doi.org/10.30564/jasr.v4i3.3430


  • There are currently no refbacks.
Copyright © 2021 Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.