Kinetics of the Oxidation of Hydrogen Sulfide by Atmospheric Oxygen in an Aqueous Medium

Deepak Singh Rathore (Atmospheric Chemistry Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, 302004, India)
Vimlesh Kumar Meena (Atmospheric Chemistry Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, 302004, India)
Chandra Pal Singh Chandel (Atmospheric Chemistry Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, 302004, India)
Krishna Swarup Gupta (Atmospheric Chemistry Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, 302004, India)

Abstract


Hydrogen sulfide is an important acid rain precursor and this led us to investigate the kinetics of its oxidation in aqueous phase by atmospheric oxygen. The kinetics was followed by measuring the depletion of oxygen in a reactor. The reaction was studied under pseudo order conditions with [H2S] in excess. The kinetics followed the rate law: -d[O2]/dt = k[S][O2]t (A) Where [S] represents the total concentration of hydrogen sulfide, [O2]t is the concentration of oxygen at time t and k is the second order rate constant. The equilibria (B - C) govern the dissolution of H2S; the sulfide ion in water forms different species: H2S K1 HS- + H+ (B) HS- K2 S2- + H+ (C) Where K1 and K2 are first and second dissociation constants of H2S. Although, H2S is present as undissociated H2S, HS- and S2- ions, nature of [H+ ] dependence of reaction rate required only HS- to be reactive and dominant. The rate law (A) on including [H+ ] dependence became Equation (D). -d[O2]/dt = k1K1[H+ ][S][O2]t / ([H+ ] 2 + K1[H+ ] + K1K2) (D) Our results indicate anthropogenic VOCs such as acetanilide, benzene, ethanol, aniline, toluene, benzamide, o-xylene, m-xylene, p-xylene and anisole to have no significant effect on the reaction rate and any observed small effect is within the uncertainty of the rate measurements.

Keywords


Hydrogen sulfide; Oxygen; Oxidation; Kinetics; Effect of organics

Full Text:

PDF

References


[1] World Health Organization. (2000). Hydrogen sulfide. In: Air quality guidelines, 2nd Edition, WHO regional office for Europe, Copenhagen, Denmark, pp 146-147.

[2] Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669- 1678. https://doi.org/10.1126/science.250.4988.1669.

[3] Gupta, K. S. (2012). Aqueous phase atmospheric oxidation of sulfur dioxide by oxygen: Role of trace atmospheric constituents – metals, volatile organic compounds and ammonia. Journal of Indian Chemical Society, 89, 713-724.

[4] Brandt, C., & van Eldik R. (1995). Transition metal catalyzed oxidation of aqueous sulfur(IV) oxides. Atmospheric -relevant process and mechanisms. Chemical Reviews, 95, 119-190. https://doi.org/10.1021/ cr00033a006.

[5] Herrmann, H. (2003). Kinetics of aqueous phase reactions relevant to atmospheric chemistry. Chemical Reviews, 103, 4691-4716. https://doi.org/10.1021/ cr020658q.

[6] OECD. (1985). Chapter 1, Air, In: The state of the environment, organization for economic cooperation and development, Paris, pp 17-46.

[7] Wayne, R. P. (2000). Chemistry of atmospheres, Oxford University Press, London, pp 27, 366.

[8] Dhayal, Y., Chandel, C. P. S., & Gupta, K. S. (2014). Role of some organic inhibitors on the oxidation of dissolved sulfur dioxide by oxygen in rain water medium. Environmental Science and Pollution Research, 21, 3474-3483. https://doi.org/10.1007/ s11356-013-2253-1.

[9] Baird, C., & Cann, M. (2008). Environmental chemistry, W H Freeman, NewYork, pp 185-190.

[10] Bulfur, G., Boyle, A. J., & Baldinger, L. H. (1936). The decomposition of solutions of sodium sulfide. The Journal of the American Pharmaceutical Association, 25, 1104-1106. https://doi.org/10.1002/ jps.3080251204.

[11] Weres, O., & Tsao, L. (1983). Reaction of hydrogen sulfide with oxygen in the presence of sulfite. Earth science division, Lawrence Berkeley laboratory, University of California, pp 4-30. https://escholarship. org/content/qt71j1g6p8/qt71j1g6p8.pdf.

[12] ATSDR. (2006). Toxicological guide for hydrogen sulfide. Atlanta, GA, US Department of health and human services, agency for toxic substances and disease registry.

[13] World Health Organization. (1981). Hydrogen sulfide, environmental health criteria, p. 19.

[14] Morse, J. W., Millero, F. J., Cornwell, J. C., & Rickard, D. (1987). The chemistry of the hydrogen sulfide and iron sulfide system in natural waters. Earth Science Reviews, 24, 1-42. https://doi. org/10.1016/0012-8252(87)90046-8.

[15] Abel, E. (1956). Autoxidation in the sulfur group. Monatshefte Fur Chemie, 87, 498-502.

[16] Chen, K. Y., & Morris, J. C. (1972). Kinetics of oxidation of aqueous sulfide by O2. Environmental Science and Technology, 6, 529-537. https://doi. org/10.1021/es60065a008.

[17] Avrahami, M., & Golding, R. M. (1968). The oxidation of sulfide ion at very low concentrations in aqueous solutions. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 647-651. https://doi. org/10.1039/J19680000647.

[18] O’Brien, D. O., & Birkner, F. B. (1977). Kinetics of oxygenation of reduced sulfur species in aqueous – solution. Environmental Science and Technology, 11, 1114-1120. https://doi.org/10.1021/es60135a009.

[19] Alper, E., & Ozturk, S. (1985). Kinetics of oxidation of aqueous sodium sulfide solutions by gaseous oxygen in a stirred cell reactor. Chemical Engineering Communications, 36, 343-349. https://doi. org/10.1080/00986448508911264.

[20] Wilmot, P. D., Cadee, K., Katinic, J. J., & Kavanagh, B. V. (1988). Kinetics of sulfide oxidation by dissolved oxygen. Journal Water Pollution Control Federation, 60 1264-1270.

[21] Millero, F. J. (1986). The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Marine Chemistry, 18, 121-147. https://doi. org/10.1016/0304-4203(86)90003-4.

[22] Millero, F. J., Hubinger, S, Fernandez, M., & Garnett, S. (1987). Oxidation of H2S in seawater as a function of temperature, pH and ionic strength. Environmental Science and Technology, 21, 439-443. https://doi. org/10.1021/es00159a003.

[23] Millero, F. J. (1991). The oxidation of H2S with O2 in the Black Sea. NATO ASI Series C: Mathematical and Physical Sciences. Black Sea Oceanography, 351, 205-227 https://link.springer.com/ book/10.1007/978-94-011-2608-3.

[24] Millero, F. J. (1991). The oxidation of hydrogen sulfide in Farmvaren Fjord. Limnology and Oceanography, 36, 1007-1014. https://doi.org/10.4319/ lo.1991.36.5.1007.

[25] Millero, F. J. (1991). The oxidation of hydrogen sulfide in the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 33, 521-527. https://doi. org/10.1016/0272-7714(91)90088-S.

[26] Emerson, S., Cransto, R., & Liss, P. S. (1979). Redox species in a reducing fjord: equilibrium and kinetic considerations. Deep-Sea Research, Part A: Oceanographic Research Papers, 26, 859-878.

[27] Leonov, A. V., & Aizatullin, T. A. (1987). Kinetics and mechanism of hydrogen sulfide oxidation in sea water. Vodnye Resursy, 14, 89-103.

[28] Cline, J. D., & Richards, F. A. (1969). Oxygenation of hydrogen sulfide in seawater of constant salinity, temperature and pH. Environmental Science and Technology, 3, 838-843. https://doi.org/10.1021/ es60032a004.

[29] Ostlund, G. H., & Alexander, J. (1963). Oxidation rate of sulfide in sea water preliminary study. Journal of Geophysical Research, 68, 3995-3997. https://doi. org/10.1029/JZ068i013p03995.

[30] Nielsen, A. H., Vollertsen, J., & Hvitved-Jacobsen, T. (2006). Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers – effects of pH and temperature. Water Environment Research, 78, 275-283. https://doi.org/10.2175/106143005x94367.

[31] Sharma, K. R., & Yuan, Z. (2010). Kinetics of sulfide oxidation under high dissolved oxygen levels. Proceedings 6th International conference on sewer processes and networks, Gold coast, Australia.

[32] Kim, C., Zhou, Q., Deng, B., Thornton, E. C., & Xu, H. (2001) Chromium(VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics. Environmental Science and Technology, 35, 2219- 2225. https://doi.org/10.1021/es0017007.

[33] Sharma, V. K. (2010). Oxidation of inorganic compounds by ferrate(VI) and ferrate(V): one-electron and two-electron transfer steps. Environmental Science and Technology, 44, 5148-5152. https://doi. org/10.1021/es1005187.

[34] Cadena, F., & Peters, R. W. (1988). Evaluation of chemical oxidizers for hydrogen sulfide control. Journal Water Pollution Control Federation, 60, 1259-1263.

[35] Betterton, E. A., & Hoffmann, M. R. (1990). Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxomonosulfate. Environmental Science and Technology, 24, 1819-1824. https://doi. org/10.1021/es00082a005.

[36] Tomar, M., & Abdulah, T. H. A. (1994). Evaluation of chemicals to control the generation of malodorous hydrogen sulfide in waste water. Water Research, 28, 2545-2552.

[37] Luther III, G. W., Findlay, A. J., Mcdonald, D. J., Owings, S. M., Hanson, T. E., Beinart, R. A., & Girguis, P. R. (2011). Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Frontiers in Microbial Physiology and Metabolism, 2, 1-9. https://doi. org/10.3389/fmicb.2011.00062.

[38] Siang, H. Y., Tahir, N. M., Malek, A., & Isa, M. Z. M. (2017). Breakdown of hydrogen sulfide in seawater under different ratio of dissolved oxygen / hydrogen sulfide. Malaysian Journal of Analytical Sciences, 21, 1016-1027. https://doi.org/10.17576/mjas-2017- 2105-03.

[39] Nielsen, A. H., Vollertsen, J., & Hvitved-Jacobsen, T. (2004). Chemical sulfide oxidation of wastewater – effects of pH and temperature. Water Science and Technology, 50, 185-192. https://pubmed.ncbi.nlm. nih.gov/15484760.

[40] Meena, V. K., Dhayal, Y., Rathore, D. S., Chandel, C. P. S., & Gupta, K. S. (2017). Inhibition of aquated sulfur dioxide autoxidation by aliphatic, acyclic, aromatic, and heterocyclic volatile organic compounds. International Journal of Chemical Kinetics, 49, 221- 233. https://doi.org/10.1002/kin.21069.

[41] Meena, V. K., Dhayal, Y., Rathore, D. S., Chandel, C. P. S., & Gupta, K. S. (2017). Inhibition of atmospheric aqueous phase autoxidation of sulphur dioxide by volatile organic compounds: mono-, di- and tri-substituted benzenes and benzoic acids. Progress in Reaction Kinetics and Mechanism, 42, 111-125. https:// doi.org/10.3184%2F146867817X14806858832108.

[42] Meena, V. K., Dhayal, Y., Saxena, D., Rani, A., Chandel, C. P. S., & Gupta, K. S. (2016). The influence of diesel - truck exhaust particles on the kinetics of the atmospheric oxidation of dissolved sulfur dioxide by oxygen. Environmental Science and Pollution Research, 23, 17380-17392. https://doi.org/10.1007/ s11356-016-6844-5.

[43] Grgic, I., Dovzan, A., Bercic, G., & Hudnik, V. (1998). The effects of atmospheric organic compounds on the Fe-catalyzed S(IV) autoxidation in aqueous solution. Journal of Atmospheric Chemistry, 29, 315-337. https://link.springer.com/article/10.1023/A:1005918912994.

[44] Grgic, I., Podkrajsek, B., Barzaghi, P., & Herrmann, H. (2007). Scavenging of SO4 - radical anions by mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. Atmospheric Environment, 41, 9187-9194. https://doi. org/10.1016/j.atmosenv.2007.07.051.

[45] Dhayal, Y., Chandel, C. P. S., & Gupta, K. S. (2014). The influence of hydroxyl volatile organic compounds on the oxidation of aqueous sulfur dioxide by oxygen. Environmental Science and Pollution Research, 21, 7805-7817. https://doi.org/10.1007/ s11356-014-2661-x.

[46] Gupta, K. S., Mehta, R. K., Sharma, A. K., Mudgal, P. K., & Bansal, S. P. (2008). Kinetics of uninhibited and ethanol–inhibited CoO, Co2O3 and Ni2O3 catalyzed autoxidation of sulfur(IV) in alkaline medium. Transition Metal Chemistry, 33, 809-817. https://doi. org/10.1007/s10874-009-9123-8.

[47] Martin, L. R., Hill, M. W., Tai, A. F., & Good, T. W. (1991). The iron catalyzed oxidation of sulfur(IV) in aqueous solution: Differing effects of organics at high and low pH. Journal of Geophysical Resarch, 96, 3085-3097. https://doi.org/10.1029/90JD02611.

[48] Pasiuk- Bronikowska, W., Bronikowska, T., & Ulejczyk, M. (2003). Synergy in the autoxdation of S(IV) inhibited by phenolic compounds. Journal of Physical Chemistry A, 107, 1742-1748. https://doi. org/10.1021/jp0208790.

[49] Pasiuk- Bronikowska, W., Bronikowska, T., & Ulejczyk, M. (2003). Inhibition of the S(IV) autoxidation in the atmosphere by secondary terpeinic compounds. Journal of Atmospheric Chemistry, 44, 97-111. https://link.springer.com/article/10.1023/ A:1022164702310.

[50] Podkrajsek, B., Grgic, I., Tursic, J., & Bercic, G. (2006). Influence of atmospheric carboxylic acids on catalytic oxidation of sulfur(IV). Journal of Atmospheric Chemistry, 54, 103-120. https://doi.org 10.1007/s10874-006-9018-x.

[51] Rudizinski, K. J. (2004). Degradation of isoprene in the presence of sulphoxy radical anions. Journal of Atmospheric Chemistry, 48, 191-216. https://doi. org/10.1023/B:JOCH.0000036851.98523.ef.

[52] Wang, L.-D., Yi, Z., Ma, Y.-L., & Ji-Ming, H. (2008). Intrinsic kinetics of sulfite oxidation with inhibitor of phenol. Acta Chimica Sinica, 66, 2336-2340.

[53] Wang, L.-D., Ma, Y.-L., Ji-Ming, H., & Yi, Z. (2009). Mechanism and kinetics of sulfite oxidation in the presence of ethanol. Industrial and Engineering Chemistry Research, 48, 4307-4311. https://doi. org/10.1021/ie801731h.

[54] Wolf, A., Deutsch, F., Hoffmann, P., & Ortner, H. M. (2000). The influence of oxalate on Fe-catalyzed S(IV) oxidation by oxygen in aqueous solution. Journal of Atmospheric Chemistry, 37, 125-135. https:// doi.org/10.1023/A:1006462025384.

[55] Ziajka, J., Beer, F., & Warneck, P. (1994). Iron-catalyzed oxidation of bisulfate aqueous solution: evidence for a free radical chain mechanism. Atmospheric Environment, 28, 2549-2552. https://doi. org/10.1016/1352-2310(94)90405-7.

[56] Ziajka, J., & Pasiuk-Bronikowska, W. (2005). Rate constants for atmospheric trace organics scavenging SO4 - in the Fe-catalyzed autoxidation of S(IV). Atmospheric Environment, 39, 1431-1438. https://doi. org/10.1016/j.atmosenv.2004.11.024.

[57] Ziajka, P., & Pasiuk-Bronikowska, W. (2003). Autoxidation of sulfur dioxide in the presence of alcohols under conditions related to tropospheric aqueous phase. Atmospheric Environment, 37, 3913-3922. https://doi.org/10.1016/S1352-2310(03)00503-X.

[58] Mudgal, P. K., Bansal, S. P., & Gupta, K. S. (2007). Kinetics of atmospheric oxidation of nitrous acid by oxygen in aqueous medium. Atmospheric Environment, 41, 4097-4105. https://doi.org/10.1016/j.atmosenv.2007.01.036.

[59] Hoffmann, M. R. (1980). Trace metal catalysis in aquatic environments. Environmental Science and Technology, 14, 1061-1066. https://doi.org/10.1021/ es60169a007.

[60] Zhang, J. Z., & Millero, F. J. (1993). Kinetics of oxidation of hydrogen sulfide in natural waters. In: Alpers, C.N., & Blowes, D.W. (Eds) Environmental Geochemisry of Sulfide Oxidation, Chapter 26, American Chemical Society, Washington, DC pp 393-409.

[61] Manoj, S. V., Mishra, C. D., Sharma, M., Rani, A., Jain, R., Bansal, S. P., & Gupta, K. S. (2000). Iron, manganese and copper concentrations in wet precipitations and kinetics of the oxidation of SO2 in rain water at two urban sites, Jaipur and Kota, in western India. Atmospheric Environment, 34, 4479-4486. https://doi.org/10.1016/S1352-2310(00)00117-5.

[62] Misra, C. D., Khanooja, P. S., Sharma, A. K., Mudgal, P. K., Bansal, S. P., & Gupta, K. S. (2013). Studies on rainwater and dry depositions at Jaipur, India. Journal of Indian Chemical Society, 90, 1137-1146. https://www.researchgate.net/publication/287410793.

[63] Vazquez, G., Zhang, J., & Millaro, F. J. (1989). Effect of metals on the rate of the oxidation of H2S in seawater. Geophysical Research Letters, 16, 1363- 1366. https://doi.org/10.1029/GL016i012p01363.

[64] Mudgal, P. K., Sharma, A. K., Mishra, C. D., Bansal, S. P., & Gupta, K. S. (2008). Kinetics of ammonia and ammonium ion inhibition of the atmospheric oxidation of aqueous sulfur dioxide by oxygen. Journal of Atmospheric Chemistry, 61, 31-55. https://doi.org/10.1007/s10874-009-9123-8.

[65] Chen, K. Y., & Morris, J. C. (1972). Oxidation of sulfide by O2: catalysis and inhibition. Journal of the Sanitary Engineering Division, 98, 215-227.

[66] Sun, W., Nesic, S., Young, D., & Woollam, R. C. (2008). Equilibrium expressions related to the solubility of the sour corrosion product mackinawite. Industrial and Engineering Chemistry Research, 47, 1738-1742. https://doi.org/10.1021/ie070750i.

[67] Harrup, M. K., & Hill, C. L. (1994). Polyoxometalate Catalysis of the Aerobic Oxidation of Hydrogen Sulfide to Sulfur. Inorganic Chemistry, 33, 5448-5455. https://doi.org/10.1021/ie070750i.

[68] Lewis, A. E. (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104, 222-234. https:// doi.org/10.1016/j.hydromet.2010.06.010.

[69] Steijns, M., Koopman, P., Nieuwenhuijse, B., & Mars, P. (1976). The mechanism of the catalytic oxidation of hydrogen sulfide III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide. Journal of Catalysis, 42, 96-106. https://doi.org/10.1016/0021-9517(76)90095-6.

[70] Hoffmann, M. R., & Lim B. C. (1979). Kinetics and mechanism of the oxidation of sulfide by oxygen: catalysis by homogenous metal-phthalocyanine complexes. Environmental Science and Technology, 13, 1406-1414. https://doi.org/10.1021/es60159a014.

[71] Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross A. B. (1985). Reactivity of HO2/O2 - radicals in aqueous solutions. Journal of Physical and Chemical Reference Data, 14, 1041-1100. https://doi. org/10.1063/1.555739.

[72] Hoffmann, M. R., & Hong, A. P. K. (1987). Catalytic oxidation of reduced sulfur compounds by homogeneous and heterogeneous Co(II) phthalocyanine complexes. Science of the Total Environment, 64, 99- 115. https://doi.org/10.1016/0048-9697(87)90125-2.

[73] Patel, H., & Vashi, R. T. (2015). Characterization of textile wastewater. In: Characterization and treatment of textile wastewater. Butterworth Heinemann, Waltham, pp 21-71.

[74] Sander, R. (2015). Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry & Physics, 15, 4399-4981. https://doi. org/10.5194/acp-15-4399-2015.

[75] Jacob, D. J. (1999). Acid rain. In: Introduction to atmospheric chemistry. Princeton University Press, New Jersey, pp 247-255.



DOI: https://doi.org/10.30564/jasr.v4i3.3465

Refbacks

  • There are currently no refbacks.
Copyright © 2021 Author(s)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.