Main Characteristics of Dust Storm sand Their Radiative Impacts: With a Focuson Tajikistan

Sabur F. Abdullaev (Physical-Technical institute Academy of Sciences of Republic of Tajikistan,USA)
Irina. N. Sokolik (School of Earth and Atmospheric Sciences Georgia Institute of Technology, Atlanta, USA,)

Abstract


Dust storms are commonly occurring phenomena in Tajikistan. The known aridity of the region is a major factor in promoting numerous dust storms. They have many diverse impacts on the environment and the climate of the region. The classification of dust storms and synoptic conditions related to their formation in Central Asia are discussed in the content of their diverse impact. We address dust optical properties that are representative of the region. Dust storms significantly reduce visibly and pose a human health threads. They also cause a significant impact on the radiative regime. As a result, dust storms may cause a decrease in temperature during daytime of up to 16 о С and an increase in temperature during night time from up to 7 о С compared to a clear day. 


Keywords


Dust storms; Dust haze; Temperature effect of aerosol; Aerosol optical thickness; Desert zone; Arid zone; Dust aerosol

Full Text:

PDF

References


[1] Makhmadaliev, B.; Novikov, V. The First National Communication of the Republic of Tajikistan to the United Nations Framework Convention on Climate Change; Dushanbe, Tajikistan, 2002.

[2] Makhmadaliev, B.; Kayumov, A.; Novikov, V.; Mustaeva, N.; Rajabov, I. The second national communication of the Republic of Tajikistan under the United Nations framework convention on climate change; Dushanbe, 2008.

[3] Kayumov, A.; Novikov, V. Third National Communication of the Republic of Tajikistan under the United Nations Framework Convention on Climate Change. 2014.

[4] Hofer, J.; Althausen, D.; Abdullaev, S.F.; Makhmudov, A.N.; Nazarov, B.I.; Schettler, G.; Engelmann, R.; Baars, H.; Fomba, K.W.; Müller, K. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies. Atmospheric Chemistry and Physics 2017, 17, 14559.

[5] Nazarov, B.I.; Abdullaev, S.F.; Maslov, V.A. Dynamic processes during dust incursions in Central Asia Irfon: Dushanbe, 2016.

[6] Nazarov, B.I.; Abdullaev, S.F.; Maslov, V.A. Atmospheric aerosol of Central Asia.; Donish: Dushanbe, 2017.

[7] Zuev, V.E. Atmospheric Transparency in the Visible and the Infrared; Israel Program for Scientific Translations;[available from the US Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va., 1970.

[8] Kondratyev, K.Y. Climate and aerosol. Trudy GGO 1976, 3-36.

[9] Ivlev, L.S. The chemical composition and structure of atmospheric aerosols; Leningrad State University: Leningrad, 1982: 368.

[10] Golitsyn, G.S.; Shukurov, A.K. Temperature effects of dust aerosol as exemplified by dust storms of Tadzhikistan. In Proceedings of Doklady- earth science sections. Silver Spring MD: 46-49.

[11] Ginzburg, A.S.; Sokolik, I.N. The transmission and reflection of light by a homogeneous layer of an absorbant aerosol. Akademiia Nauk SSSR Fizika Atmosfery i Okeana 1989, 25: 954-959.

[12] Goody, R.M. Atmospheric Radiation [Russian translation], 1966.

[13] Romanov, N.N. Dust storms in Central Asia; Tashkent, 1960: 198.

[14] Bugaev, V.A.; Georgia, V.A.; Kozin, B.M. Synoptic processes in Central Asia; Tashkent, 1957: 67.

[15] Abdullaev, S.F. The impact of global climate change and adaptation measures to climate change. In Nature and Us: Questions of environmentally sustainable development in Tajikistan, Dushanbe, 2009: 155-184.

[16] Nazarov, B.I.; Abdullaev, S.F. Aerosol pollution under arid and mountainous areas of Tajikistan. In Proceedings of International Expert Meeting on the environment: 60-62.

[17] Karetnikova, K.A. Synoptic conditions for the occurrence of the "Afghans" and some of the features of this phenomenon. Journal of Geophysics 1985, 5: 36-80.

[18] Dzhorzhdio, V.A. In Guide to short-term weather forecasts, Tashkent, 1954: 73-77.

[19] Abdullaev, S.F.; Nazarov, B.I.; Sharifov, D.M. Modeling of transport process and distribution of arid aerosol. In Proceedings of XIII Joint International Symposium "Atmospheric and ocean optics. Atmospheric physics.", Tomsk, Russia.

[20] Nazarov, B.I.; Salikhov, D.K.; Abdullaev, S.F. The description of moving of atmospheric particles in the near earth layer. In Proceedings of Russian-Canadian Workshop Modeling atmospheric dispersion of weapons agents, Moscow: 137-139.

[21] Nazarov, B.I.; Abdullaev, S.F.; Maslov, V.A. Laws of dusty haze - the number of episodes and duration. In Proceedings of Problems of modern physics, Dushanbe; pp. 65-68.

[22] Abdullaev, S.F.; Nazarov, B.I.; Madvaliev, U. Climate change in condition of arid and of high mountain regions of Tajikistan. In Proceedings of XVII-th International Energy and Environment Fair and Conference, Istanbul: 277-278.

[23] Dovgalyuk, Y.A.; Ivlev, L.S. Physics of Water and Other Atmospheric Aerosols, 1998.

[24] Sokolik, I.N.; Andronova, A.; Johnson, T.C. Complex refractive index of atmospheric dust aerosols. Atmospheric Environment. Part A. General Topics 1993, 27: 2495-2502.

[25] Kondratyev, K.Y.; Moskalenko, N.I.; Pozdnyakov, D.V. Atmospheric aerosols.; Gidrometeoizdat: Leningrad, 1983: 224.

[26] Bohren, C.F.; Huffman, D.R. Absorption and scattering of light by small particles; John Wiley & Sons: 2008.

[27] Herman, B.M.; Browning, R.S.; De Luisi, J.J. Determination of the effective imaginary term of the complex refractive index of atmospheric dust by remote sensing: The diffuse-direct radiation method. Journal of the Atmospheric Sciences, 1975, 32: 918-925.

[28] Lindberg, J.D.; Laude, L.S. Measurement of the absorption coefficient of atmospheric dust. Applied optics, 1974, 13: 1923-1927.

[29] Lindberg, J.D.; Gillespie, J.B. Relationship between particle size and imaginary refractive index in atmospheric dust. Applied optics, 1977, 16: 2628-2630.

[30] Hale, G.M.; Holland, W.E.; Querry, M.R. Kramers-Kronig analysis of relative reflectance spectra measured at an oblique angle. Applied optics, 1973, 12: 48-51.

[31] Volz, F.E. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash. Applied Optics 1973, 12: 564-568.

[32] Volz, F.E. Infrared absorption by atmospheric aerosol substances. Journal of Geophysical Research, 1972, 77: 1017-1031.

[33] Volz, F.E. Infrared optical constants of aerosols at some locations. Applied optics 1983, 22: 3690-3700.

[34] Darmenova, K.; Sokolik, I.N.; Darmenov, A. Characterization of east Asian dust outbreaks in the spring of 2001 using ground-based and satellite data. In J. Geophys. Res., AGU: 2005, 110: D02204.

[35] Sakai, T.; Nagai, T.; Nakazato, M.; Mano, Y.; Matsumura, T. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Applied Optics 2003, 42: 7103-7116.

[36] Liu, Z.; Sugimoto, N.; Murayama, T. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Applied Optics 2002, 41: 2760-2767.

[37] Iwasaka, Y.; Shi, G.; Trochkine, D.; Matsui, A.; Kim, Y.; Yamada, M.; Nagatani, T. Processes of Background KOSA Outbreak. Proceedings of the EMEA 2005 in Kanazawa, 2005, Intern. Sympos. on Environmental Monitoring in East Asia—Remote Sens ing and Forests, 2005, 20-36.

[38] Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian dust transported one full circuit around the globe. Nature Geoscience, 2009, 2: 557.

[39] DOI: 10.1038/NGEO583

[40] Andronova, A.V.; Minashkin, V.M. Study microphysical and optical characteristics of dust aerosols of different regions of the USSR. Izvestiya Acad.Sci., Atmos. and Oceanic Physics 1989, 25: 40-44.

[41] Ivlev, L.S. Aerosol atmospheric model. Problems of Atmospheric Physics 1969, 8: 125-160.

[42] Kortum, G. Reflectance Spectroscopy: Principles Methods, Applications; New York, 1969.

[43] Andronova, A.V.; Zhukovsky, D.A.; Mandibles, V.F. Chemical and microphysical characteristics of aerosols on the measuring sites and Shaartuz Esanbay. In Soviet-American experiment on arrid aerosol, SPA "Typhoon": St. Petersburg, 1992.

[44] Zuev, V.E.; Ivlev, L.S.; Kondratyev, K.Y. The new findings of aerosols. Izvestiya USSR Acad.Sci., Atmos. and Oceanic Physics 1973, 9: 371-385.

[45] Patterson, E.M.; Gillette, D.A.; Stockton, B.H. Complex index of refraction between 300 and 700 nm for Saharan aerosols. Journal of Geophysical Research, 1977, 82: 3153-3160.

[46] Golitsyn, G.S. Soviet-American experiment on arid aerosol; NGO "Typhoon": St. Petersburg, 1992: 208.

[47] Kondratyev, K.Y.; Jvalev, V.F. First Global Experiment PIGAP "Aerosol and climate"; Gidrometeoizdat: Leningrad, 1976: 239.

[48] Krapivtseva, G.M.; Krivchikova, T.V.; Shukurov, A.K. On the synoptic conditions during the period of Soviet-US dust experiment in Tajikistan in September 1989. In Soviet-American experiment on arid aerosol, Hydrometeoizdat: St.Petersburg, 1993: 20-24.

[49] Mack-Cynon, D. Satellite data on dust storms in Tajikistan. In Soviet-American experiment on arid aerosol, Hydrometeoizdat: St.Petersburg, 1993: 25-26.

[50] Belan, B.D.; Kabanov, D.M.; Panchenko, M.V. Aircraft sounding of atmospheric parameters in the dust experiment. In Soviet-American experiment on arid aerosol, Hydrometeoizdat: St.Petersburg, 1993: 26-28.

[51] Golitsyn, G.S.; Shukurov, A.K.; Abdullaev, S.F.; Nazarov, B.I. On the surface are cooling due too dust atmospheric turbidity. In Soviet-American experiment on arid aerosol, Hydrometeoizdat: St.Petersburg, 1993: 67-78.

[52] Shukurov, A.K.; Nazarov, B.I.; Abdullaev, S.F. On optical depth ratios of dust aerosol in visible and infrared spectra regions. In Soviet-American experiment on arid aerosol, Hydrometeoizdat: St.Petersburg, 1993: 83-88.

[53] Eguchi, K.; Uno, I.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Sugimoto, N.; Liu, Z. Trans-pacific dust transport: integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmospheric Chemistry and Physics, 2009, 9: 3137-3145.

[54] Cess, R.D.; Potter, G.L.; Ghan, S.J.; Gates, W.L. The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one‐and three‐dimensional climate models. Journal of Geophysical Research: Atmospheres 1985, 90: 12937-12950.

[55] Budyko, M.I.; Golitsyn, G.; Israel, Y.A. Global climate catastrophe; Gidrometeoizdat: Leningrad, 1986: 160.

[56] Thompson, S.L.; Schneider, S.H.; Golitsyn, G.S.; else, S.b. Environmental Consequences of Nuclear War. Environment, 1986, 28.

[57] Alperovich, L.I.; Latifov, S.; Mamchenko, T.B. Determining the optical constants of dispersive media in the infrared region. Colloid Journal , 1984, 46: 999-1001.

[58] Nazarov, B.I.; Abdullaev, S.F.; Maslov, V.A. Influence of dust storms on climate change. In Proceedings of International Conference "Problems of modern physics.", Dushanbe: 50-54.

[59] Nazarov, B.I.; Abdullaev, S.F.; Maslov, V.A. Studies of Temperature Effects of Dust Storms. Izvestiya. Atmospheric and Oceanic Physics, 2010, 46: 475-481.

[60] Abdullaev, S.F.; Nazarov, B.I.; Maslov, V.A. Some results of the aerosol influence of air pollution on climate change. In Proceedings of International Conference "Problems of modern physics.", Dushanbe: 40-44.

[61] Pachenko, M.V.; Terpugova, S.A.; Bodhaine, B.A.; Isakov, A.A.; Sviridenkov, M.A.; Sokolik, I.N.; Romashova, E.; Nazarov, B.; Shukurov, A.; Chistyakova, E.I. Optical investigations of dust storms during USSR-US experiments in Tadzhikistan, 1989. Atmospheric Environment, Part A. General Topics 1993, 27: 2503-2508.



DOI: https://doi.org/10.30564/jasr.v2i2.352

Refbacks

  • There are currently no refbacks.
Copyright © 2019 Author(s)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.