Cogeneration Potential in the Industrial Sector and Gas Emission Reduction: A Case Study

Natália de Assis Brasil Webe (Institute of Energy and Environment, Universidade de São Paulo)
Hirdan Katarina de Medeiros Costa (Institute of Energy and Environment, Universidade de São Paulo)

Abstract


The current paper aims to discuss the potential of sustainable energy management in a decentralized manner by integrating cleaner energy production initiatives using different energy sources as a tool for achieving sustainability. In order to have a robust analysis our methods choose a specific case study based on industrial consumption. In this case, our goal is to conduct a comparative analysis of the use of diesel oil and replacing it with piped natural gas in a cogeneration system at the municipal industrial sector, aimed at local development through cleaner production mechanisms. This paper conduct a survey of the potential for cogeneration in the industrial sector of the municipality of Novo Hamburgo. The results have shown advantages of reducing CO2, CH4, N2O emissions and particulate matter in diesel oil replacement project by natural gas, and the need to maintain the NOx emission rates. Finally, after theoretical studies for our case, we concluded that after the diesel oil replacement for natural gas, the results of emissions would be beneficial and with this choice, it would be achieved a sustainable cleaner energy production.


Keywords


sustainable energy; cleaner energy production; cogeneration system; decentralized generation; industrial sector; Novo Hamburgo-RS

Full Text:

PDF

References


[1] Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, ANP, 2014. Boletim Anual de Preços 2014: preços do petróleo, gás natural e combustíveis nos mercados nacional e internacional, Rio de Janeiro: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis.

[2] Aldrich, R., Xavier, F., Puig, J., Mutjé, P., Pèlach, M., 2011. Allocation of GHG emissions in combined heat and power systems: a new proposal for considering inefficiencies of the system. Journal of Cleaner Production 19, pp.1072-1079.

[3] Andreos, R. Estudo de viabilidade técnico-economica de pequenas centrais de cogeração a gás natural no setor terciário do estado de São Paulo. Dissertação de Mestrado – Programa de Pós Graduação em Energia (EP/FEA/IEE/IF). Orientador: José R. Simões Moreira – São Paulo, 2013, 168 p.

[4] Andrews, D., Riekkola, A.K., Tzimas, E. Background Report on EU-27 District Heating and Cooling Potentials, Barriers, Best Practice and Measures of Promotion. Luxem- bourg. 2012.

[5] Associação Brasileira das Indústrias de Calçados, Abicalçados. 2012. Available at: http://www.abicalcados.com.br/estatisticas.html [Accessed 18. 07.12].

[6] Associação Comercial, Industrial e de Serviços de Novo Hamburgo, Campo Bom e Estância Velha, ACI-NH/CB/EV. Data sent by e-mail [18.09.2015].

[7] Baer, P., Brown, M.A., Kimb, G., 2015. The job generation impacts of expanding industrial cogeneration. Ecological Economics 110, pp. 141–153.

[8] Capeletto, G., 2014. Balanço Energético do Rio Grande do Sul 2014: ano base 2013. Available at: http://www.ceee.com.br/pportal/ceee/archives/BERS2013/Balanco_Energetico_RS_2014_base_2013.pdf [Accessed 21.10.2015].

[9] Celador, C., Erkoreka, A., Escudero K., Sala, J.M., 2011. Feasibility of small-scale gas engine-based residential cogeneration in Spain. Energy Policy 39, pp. 3813–3821

[10] Chung, M., Park, C., Lee, S., Park, H.C., Hoonim, Y., Chang, Y., 2012. A decision support assessment of cogeneration plant for a community energy system in Korea. Energy Policy 47, pp. 365–383.

[11] Connolly, D., Lund, H., Mathiesen, B.V., Werner, S., Möller, B., Persson, U., Boermans, T., Trier, D., Østergaard, P.A., Nielsen S., 2014. Heat roadmap Europe: combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 65 pp. 475–489.

[12] Chittum, A., Østergaard, P.A., 2014. How Danish communal heat planning empowers municipalities and benefits individual consumers. Energy Policy 74, pp. 465–474.

[13] Doluweera, G.H., Jordaan, S.M., Moore, M.C., Keith, D.W., Bergerson, J.A., 2011. Evaluating the role of cogeneration for carbon management in Alberta G.H. Energy Policy 39, pp. 7963–7974.

[14] Driesen, J., Katiraei, F., 2008. Design for Distributed Energy Resources. IEEE power & energy magazine, pp. 1540-7977.

[15] Eletrobras, 2009. Inventário de Emissões de Gases de Efeito Estufa provenientes de Usinas Termelétricas (fontes fixas): 2003 a 2008. Available at: http://www.eletrosul.gov.br/files/files/sustentabilidade/gestao-ambiental/INVENT%C3%81RIO_DE_EMISS%C3%95ES_DE_GEE_UTES_2003_2008%5B1%5D.pdf [Accessed 15.10.2015].

[16] Fahlén, E.; Ahlgren, E., 2012. Accounting for external environmental costs in a study of a Swedish district-heating system e an assessment of simplified approaches. Journal of Cleaner Production 27, pp. 165- 176.

[17] Gonçalves, C., Haffner, J. A. H. 2008. O setor calçadista no rio grande do sul: uma análise da sua evolução recente. Available at: http://www.fee.rs.gov.br/4-encontro-economia-gaucha/trabalhos/estudos-setoriais-sessao1-4.doc. [Accessed 28. 09.2014].

[18] Google, 2015. Googlemaps. Available at: https://www.google.com.br/maps/place/Novo+Hamburgo+-+RS/@-29.690741,-51.1470659,12.5z/data=!4m2!3m1!1s0x9519424ad6403661:0x5d959f79a24a61c8?hl=en [Accessed 03.10.2015].

[19] Hwang, J.J., 2012. Thermal regenerative design of a fuel cell cogeneration system. Journal of Power Sources 219, pp. 317 and 324.

[20] Iacobescu, F., Badesc, V., 2011. Metamorphoses of cogeneration-based district heating in Romania: A case study. Energy Policy 39, pp. 269–280.

[21] IPCC, 1996. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available at: http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html [Accessed 10.10.2015].

[22] Instituto Brasileiro de Geografia e Estatística, IBGE, 2014. IBGE CIDADES. Available at: http://cod.ibge.gov.br/2D1 [Accessed 15.10.2015].

[23] Karschin, I.; Geldermann, J., 2015. Efficient cogeneration and district heating systems in bioenergy villages: an optimization approach. Journal of Cleaner Production 104, pp. 305- 314

[24] Lovins, A. Reiventando o Fogo: soluções ousadas de negocio na nova era da energia. Rock Mountain Institute. Editora: Cultrix, 2014, 376 p.

[25] Moloney, S.; Horne, R.E.; Fien, J. Transitioning to low carbon communities—from behaviour change to systemic change: Lessons from Australia. Energy Policy 38, pp. 7614-7623.

[26] Moya, J.A., 2013. Impact of support schemes and barriers in Europe on the evolution of cogeneration. Energy Policy 60, pp. 345–355.

[27] Martins, C. M. R., 2013. Caracterização da Região Metropolitana de Porto Alegre. Available at: http://cdn.FUNDAÇÃO DE ECONOMIA E ESTATÍSTICA.tche.br/tds/112.pdf [Accessed 28. 09. 2014].

[28] Ouellette, A., Rowe, A., Sopinka, A., Wild, P., 2014. Achieving emissions reduction through oil sands cogeneration in Alberta’s deregulated electricity market. Energy Policy 71, pp. 13–21.

[29] Palomino, R.G., Nebra, S.A., 2012. The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru. Energy Policy 50, pp. 192–206.

[30] Ramos, C., Bezerra, V. 2004. Cogeração: pode ser a saída para a expansão do uso do Gás Natural. Revista Gás Brasil, São Paulo, 2 (5), pp. 42-3.

[31] Ravina, M.; Genon, G., 2015. Global and local emissions of a biogas plant considering the production of biomethane as an alternative end-use solution. Journal of Cleaner Production 102, pp.115- 126.

[32] Ren, H., Gao, W. A., 2010. MILP model for integrated plan and evaluation of distributed energy systems. Applied Energy 87, pp. 1001–1014.

[33] Rutter, P., Keirstead, J., 2012. A brief history and the possible future of urban energy systems. Energy Policy 50, pp. 72–80

[34] Ribeiro, L. S., 2003. O Impacto do Gás Natural nas Emissões de Gases de Efeito Estufa: o Caso do Município do Rio de Janeiro. Available at: http://www.ppe.ufrj.br/ppe/production/tesis/lsribeiro.pdf [Accessed 15.10.2015].

[35] Siler-Evans, K., Morgan, M. G., Azevedo, I.L., 2012. Distributed cogeneration for commercial buildings: Can we make the economics work? Energy Policy 42, pp. 580–590.

[36] Sulgás, 2015a. Mapas. Available at: http://www.sulgas.rs.gov.br/sulgas/mapas [Accessed 21.10.2015].

[37] Sulgás, 2015b. Tabela de Preços - Industrial. Available at: http://www.sulgas.rs.gov.br/sulgas/index.php/industrial/tabela-de-precos

[38] [Accessed 20.10.2015].

[39] Weber, N., 2014. Levantamento e análise de dados para diagnóstico energético do município de Novo Hamburgo. Novo Hamburgo, monograph (graduation) State University of Rio Grande do Sul, in Energy Engineering Course.

[40] Wikipedia, 2015. Localização de Novo Hamburgo. Available at: https://pt.wikipedia.org/wiki/Novo_Hamburgo#/media/File:RioGrandedoSul_Municip_NovoHamburgo.svg [Accessed 15.10.2015].



DOI: https://doi.org/10.30564/jasr.v2i1.419

Refbacks

  • There are currently no refbacks.
Copyright © 2019 Hirdan Katarina de Medeiros Costa, Natália de Assis Brasil Webe


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.