Cogeneration Potential in the Industrial Sector and Gas Emission Reduction: A Case Study

Authors

  • Natália de Assis Brasil Webe Institute of Energy and Environment, Universidade de São Paulo
  • Hirdan Katarina de Medeiros Costa Institute of Energy and Environment, Universidade de São Paulo

DOI:

https://doi.org/10.30564/jasr.v2i1.419

Abstract

The current paper aims to discuss the potential of sustainable energy management in a decentralized manner by integrating cleaner energy production initiatives using different energy sources as a tool for achieving sustainability. In order to have a robust analysis our methods choose a specific case study based on industrial consumption. In this case, our goal is to conduct a comparative analysis of the use of diesel oil and replacing it with piped natural gas in a cogeneration system at the municipal industrial sector, aimed at local development through cleaner production mechanisms. This paper conduct a survey of the potential for cogeneration in the industrial sector of the municipality of Novo Hamburgo. The results have shown advantages of reducing CO2, CH4, N2O emissions and particulate matter in diesel oil replacement project by natural gas, and the need to maintain the NOx emission rates. Finally, after theoretical studies for our case, we concluded that after the diesel oil replacement for natural gas, the results of emissions would be beneficial and with this choice, it would be achieved a sustainable cleaner energy production.

Keywords:

Sustainable energy, Cleaner energy production, Cogeneration system, Decentralized generation, Industrial sector, Novo Hamburgo-RS

References

[1] Brito, T. L. F.; Galbieri, R.; Mouette, D.; Costa, H. K. M; Moutinho Dos Santos, E.; Faga, M. T. W. (2017), Bus fleet emissions: new strategies for mitigation by adopting natural gas. Mitigation and Adaptation Strategies for Global Change, v. 23, p. 147-160.

[2] Brito, T. L. F.; Moutinho dos Santos, E.; Galbieri, R.; Costa, H. K. M. (2016), Qualitative Comparative Analysis of cities that introduced compressed natural gas to their urban bus fleet. Renewable & Sustainable Energy Reviews, p. 502-508.

[3] Lovins, A. (2011), Reinventing Fire: Bold Business Solutions for the New Energy Era. Rock Mountain Institute. Chelsea Green Publishing, USA.

[4] Collaço, F.M.A., Weber, N.A.B., Costa, H.K.M., San-tos, E.M., Bermann, C. (2016), How decentralized energy planning can contribute to cleaner produc-tion initiatives, p. 209-228. In: Biagio, F., Giannetti, C.M.V.B., Almeida, F.A., Sevegnani, F. Advances in Cleaner Production, NY, Nova Publisher, v. 2.

[5] Andreos, R. (2013), Estudo de viabilidade técnico-e-conômica de pequenas centrais de cogeração a gás natural no setor terciário do estado de São Paulo. Dissertação de Mestrado. Programa de Pós Gradua-ção em Energia (EP/FEA/IEE/IF). São Paulo.

[6] Driesen, J., Katiraei, F. (2008), Design for Distribut-ed Energy Resources. IEEE power & energy maga-zine, v. 6, p. 1540-7977.

[7] Ren, H., Gao, W. A. Milp (2010), model for integrat-ed plan and evaluation of distributed energy systems. Applied Energy, v. 87, p. 1001–1014.

[8] Doluweera, G.H., Jordaan, S.M., Moore, M.C., Keith, D.W., Bergerson, J.A. (2011), Evaluating the role of cogeneration for carbon management in Alberta G.H. Energy Policy, v. 39, p. 7963–7974.

[9] Moya, J. A. (2013), Impact of support schemes and barriers in Europe on the evolution of cogeneration. Energy Policy, v. 60, p. 345–355.

[10] Siler-Evans, K., Morgan, M. G., Azevedo, I.L. (2012), Distributed cogeneration for commercial buildings: Can we make the economics work? Energy Policy, v. 42, p. 580–590.

[11] Korhonen, J. (2002), A material and energy flow model for co-production of heat and power. Journal of Cleaner Production, v. 10, p.537-544.

[12] Ouellette, A., Rowe, A., Sopinka, A., Wild, P. (2014), Achieving emissions reduction through oil sands cogeneration in Alberta’s deregulated electricity mar-ket. Energy Policy, v. 71, p. 13–21.

[13] Baer, P., Brown, M.A., Kimb, G. (2015), The job generation impacts of expanding industrial cogenera-tion. Ecological Economics, v. 110, p. 141–153.

[14] Andrews, D., Riekkola, A.K., Tzimas, E. (2012), Background Report on EU-27 District Heating and Cooling Potentials, Barriers, Best Practice and Mea-sures of Promotion. Luxem- bourg.

[15] Chittum, A., Østergaard, P.A. (2014), How Danish communal heat planning empowers municipalities and benefits individual consumers. Energy Policy, v. 74, p. 465–474.

[16] Connolly, D., Lund, H., Mathiesen, B.V., Werner, S., Möller, B., Persson, U., Boermans, T., Trier, D., Østergaard, P.A., Nielsen S. (2014), Heat roadmap Europe: combining district heating with heat savings to decarbonise the EU energy system. Energy Policy, v. 65, p. 475–489.

[17] Tian, J., Liu, W., Lai, B., Li X., Chen, L. (2014), Study of the performance of eco-industrial park de-velopment in China. Journal of Cleaner Production, v. 64, p. 486-494.

[18] Iacobescu, F., Badesc, V. (2011), Metamorphoses of cogeneration-based district heating in Romania: A case study. Energy Policy, v. 39, p. 269–280.

[19] Rutter, P., Keirstead, J. (2012), A brief history and the possible future of urban energy systems. Energy Policy, v. 50, p. 72–80.

[20] Chung, M., Park, C., Lee, S., Park, H.C., Hoonim, Y., Chang, Y. (2012), A decision support assessment of cogeneration plant for a community energy system in Korea. Energy Policy, v. 47, p. 365–383.

[21] Celador, C., Erkoreka, A., Escudero K., Sala, J.M. (2011), Feasibility of small-scale gas engine-based residential cogeneration in Spain. Energy Policy, v. 39, p. 3813–3821.

[22] Palomino, R.G., Nebra, S.A. (2012), The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru. Energy Poli-cy, v. 50, p. 192–206.

[23] COGEN. Associação da Indústria de Cogeração de Energia. 2015. Available at: http://www.cogen.com.br/ (Accessed 15.10.2015).

[24] Hwang, J. J. (2012), Thermal regenerative design of a fuel cell cogeneration system. Journal of Power Sources, v. 219, p. 317 and 324.

[25] Karschin, I.; Geldermann, J. (2015), Efficient cogen-eration and district heating systems in bioenergy vil-lages: an optimization approach. Journal of Cleaner Production, v. 104, p. 305- 314.

[26] Ravina, M.; Genon, G. (2015), Global and local emissions of a biogas plant considering the produc-tion of biomethane as an alternative end-use solution. Journal of Cleaner Production, v. 102, p.115- 126.

[27] Celma, A. R., Blázquez, F. C., Rodríguez, F.L. (2013), Feasibility analysis of CHP in an olive processing industry. Journal of Cleaner Production, v. 42, p. 52-57.

[28] Andersen, A.N., Lund, H. (2007), New CHP part-nerships offering balancing of fluctuating renewable electricity productions. Journal of Cleaner Produc-tion, v. 15, p. 288-293.

[29] Aldrich, R., Xavier, F., Puig, J., Mutjé, P., Pèlach, M. (2011), Allocation of GHG emissions in combined heat and power systems: a new proposal for consid-ering inefficiencies of the system. Journal of Cleaner Production, v. 19, p.1072-1079.

[30] Moloney, S., Horne, R. E., & Fien, J. (2010). Transi-tioning to low carbon communities—from behaviour change to systemic change: Lessons from Austra-lia. Energy policy, 38(12), 7614-7623.

[31] Fahlén, E.; Ahlgren, E. (2012), Accounting for ex-ternal environmental costs in a study of a Swedish district-heating system e an assessment of simplified approaches. Journal of Cleaner Production, v. 27, p. 165- 176.

[32] Weber, N. (2014), Levantamento e análise de dados para diagnóstico energético do município de Novo Hamburgo. Trabalho de conclusão de curso. Enge-nharia em Energia. Universidade Estadual do Rio Grande do Sul (UERGS), Novo Hamburgo.

[33] Korhonen, J. (2001), Co-production of heat and pow-er: an anchor tenant of a regional industrial ecosystem. Journal of Cleaner Production, v. 9, p. 509-517.

[34] IPCC. Revised 1996 IPCC Guidelines for National Green House Gas Inventories. 1996. Available at: http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (Accessed 10.10.2015).

[35] ELETROBRAS. Inventário de Emissões de Gases de Efeito Estufa provenientes de Usi-nas Termelétricas (fontes fixas): 2003 a 2008. 2009. Available at: http://www.eletrosul.gov.br/files/files/sustentabilidade/gestao-ambiental/IN-VENT%C3%81RIO_DE_EMISS%C3%95ES_DE_GEE_UTES_2003_2008%5B1%5D.pdf (Accessed 15.10.2015).

[36] Ribeiro, L. S. O Impacto do Gás Natural nas Emis-sões de Gases de Efeito Estufa: o Caso do Município do Rio de Janeiro. 2003. Available at: http://www.ppe.ufrj.br/ppe/production/tesis/lsribeiro.pdf [Ac-cessed 15.10.2015].

[37] Associação Comercial, Industrial E De Serviços De Novo Hamburgo, Campo Bom E Estância Velha, Aci-Novo Hamburgo/Cb/Ev, 2015. Data sent by e-mail (18.09.2015).

[38] Martins, C. M. R., 2013. Caracterização da Re-gião Metropolitana de Porto Alegre. 2013. Avail-able at: http://cdn.FUNDAÇÃODEECONOMIAEESTATÍSTICA.tche.br/tds/112.pdf (Accessed 28.09.2014).

[39] Capeletto, G., 2014. Balanço Energético do Rio Grande do Sul 2014: ano base 2013.http://www.ceee.com.br/pportal/ceee/archives/BERS2013/Balanco_Energetico_RS_2014_base_2013.pdf (Accessed 21.10.2015).

[40] SULGÁS. Com a cogeração, você pode obter maior aproveitamento energético. 2015. Available at: www.sulgas.rs.gov.br/sulgas/index.php/cogeracao (Ac-cessed 20.10.2015).DOI: https://doi.org/10.30564/jasr.v2i1.419

Downloads

How to Cite

Webe, N. de A. B., & Costa, H. K. de M. (2019). Cogeneration Potential in the Industrial Sector and Gas Emission Reduction: A Case Study. Journal of Atmospheric Science Research, 2(1), 24–31. https://doi.org/10.30564/jasr.v2i1.419

Issue

Article Type

Article