High-Resolution Radiometer for Remote Sensing of Solar Flare Activity from Low Earth Orbit Satellites

Luca Aluigi (DISMI, University of Modena and Reggio Emilia, Reggio Emilia, Italy)

Article ID: 420

DOI: https://doi.org/10.30564/jasr.v1i1.420

Abstract


This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.

For this Article Withdrawal Statement, please click on: 

https://ojs.bilpublishing.com/index.php/jasr/article/view/621

Abstract: Solar flares, intense bursts of radiation, can disrupt the atmosphere and potentially affect communication, navigation and electrical systems. A newly developed miniaturised microwave radiometer used on a space-borne platform should offer astronomers unprecedented understanding of the largest explosive phenomena in our solar system. In this paper the activity and results of the EU funded research project FLARES are presented. Objective of FLARES has been the study, analysis and design of millimetre-wave (mm-wave) system-on-chip (SoC) radiometer for space-borne detection of solar flares. The proposed approach has contributed to reduce significantly the power consumption and weight with respect to the existing instruments for the observation and study of solar flares. In particular, the proposed SoC Dicke radiometer can achieve one order of magnitude improvement in terms of resolution, so allowing the detection of solar flares with relatively low intensity, i.e. about 100 times lower than those currently detected by the existing systems, owing to space-borne operations and the microchip-level miniaturization through silicon technology under space qualification.


Keywords


BiCMOS; Dicke; mm-waves; integrated circuits; sensor; space; sun.

Full Text:

PDF

References


[1] B.T. Tsurutani, O.P. Verkhoglyadova, A.J. Mannucci, G.S. Lakhina, G. Li, and G.P. Zank, “A brief review of solar flare effects on the ionosphere,” Radio Science, vol. 44, pp. 0-17, 2009. doi: 10.1029/2008RS004029

[2] K. Shetye, and T. Overbye, “Modeling and analysis of GMD effects on power systems: An overview of the impact on large-scale power systems,” IEEE Electrification Magazine, vol. 3, no. 4, pp. 13-21, Dec. 2015. doi: 10.1109/MELE.2015.2480356

[3] B. Bala, L.J. Lanzerotti, D.E. Gary, and D.J. Thomson, “Noise in wireless systems produced by solar radio bursts,” Radio Science, vol. 37, 2002. doi: 10.1029/2001RS002481

[4] D.D. Morabito, O. P. Verkhoglyadova, D. Han, and J. E. Riedel, “The effects of earthward directed interplanetary coronal mass ejections on near-Earth S band signal links,” Radio Science, vol. 46, 2011. doi: 10.1029/2011RS004718

[5] J. León-Tavares, E. Valtaoja, M. Tornikoski, A. Lähteenmäki, and E. Nieppola, “The connection between gamma-ray emission and millimeter flares in Fermi/LAT blazars,” A&A, vol. 532, n. A146, 2011. doi: 10.1051/0004-6361/201116664

[6] System-on-Chip Millimeter-wave Radiometers for Space-based Detection of Solar Flares. EC-CORDIS. [Online]. Available: http://cordis.europa.eu/project/rcn/187972_en.html

[7] S. Sahoo, X. Bosch-Lluis, S.C. Reising, and J. Vivekanandan, “Radiometric Information Content for Water Vapor and Temperature Profiling in Clear Skies Between 10 and 200 GHz,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 2, pp. 859-871, Feb. 2015. doi: 10.1109/JSTARS.2014.2364394

[8] T.S. Bastian, A.O. Benz, and D.E. Gary, “Radio emission from solar flares,” Annual Review of Astronomy and Astrophysics, vol. 36, pp. 131-188, 1998. doi: 10.1146/annurev.astro.36.1.131

[9] S. Pojolainen, J. Hildebrandt, M. Karlicky, A. Magun, and I.M. Chertok, “Prolonged millimeter-wave emission from a solar flare near the limb,” Astronomy and Astrophysics Journal, vol. 396, no. 2, pp. 683-692, 2002. doi: 10.1051/0004-6361:20021431

[10] A.B. Tanner, and A. L. Riley, “Design and performance of a high-stability water vapor radiometer,” Radio Science, 38(3), 8050, 2003. doi: 10.1029/2002RS002673

[11] R. Villarino et al., “Design and test of the L-band automatic radiometer (LAURA) temperature control,” IEEE IGARSS '05., 2005, pp. 4902-4905. doi: 10.1109/IGARSS.2005.1526773

[12] L. Pazmany and M. Wolde, “A compact airborne G-band (183 GHz) water Vapor Radiometer and retrievals of liquid cloud parameters from coincident radiometer and millimeter wave radar measurements,” 2008 Microwave Radiometry and Remote Sensing of the Environment, Firenze, 2008, pp. 1-4. doi: 10.1109/MICRAD.2008.4579473

[13] F. Iturbide-Sanchez, S. C. Reising and S. Padmanabhan, “A Miniaturized Spectrometer Radiometer Based on MMIC Technology for Tropospheric Water Vapor Profiling,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 7, pp. 2181-2194, July 2007. doi: 10.1109/TGRS.2007.898444

[14] F. Maiwald et al., “Reliable and Stable Radiometers for Jason-3,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2754-2762, June 2016. doi: 10.1109/JSTARS.2016.2535281

[15] L. Colangeli. (2015, 07). Announcement of the plans for the issuing of a call for a medium-size mission for launch in 2029-2030 (M5). European Space Agency. [Online]. Available: http://sci.esa.int/jump.cfm?oid=56198

[16] H. Carreno-Luengo, A. Camps; P. Via, J.F. Munoz, A. Cortiella, D. Vidal, J. Jane, N. Catarino, M. Hagenfeldt, P. Palomo, and S. Cornara, “3Cat-2—An Experimental Nanosatellite for GNSS-R Earth Observation: Mission Concept and Analysis,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.PP, no.99, pp.1-12. doi: 10.1109/JSTARS.2016.2574717

[17] L. Aluigi, F. Alimenti, and L. Roselli, “Fully integrated millimeter-wave radiometers: Development level and perspectives,” in IEEE RWS, 2010, pp.1-4. doi: 10.1109/RWS.2010.5434175

[18] Fonte, D. Zito, and F. Alimenti, “CMOS microwave radiometer: Experiments on down-conversion and direct detections,” IEEE ICECS, 2008, pp.1273-1276. doi: 10.1109/ICECS.2008.4675092

[19] F. Alimenti, D. Zito, A. Boni, M. Borgarino, A. Fonte, A. Carboni, S. Leone, M. Pifferi, L. Roselli, B. Neri, and R. Menozzi, “System-on-chip microwave radiometer for thermal remote sensing and its application to the forest fire detection,” IEEE ICECS, 2008, pp.1265-1268. doi: 10.1109/ICECS.2008.4675090

[20] Tomkins, P. Garcia, and S.P. Voinigescu, “A passive W-Band imaging receiver in 65-nm bulk CMOS,” IEEE Journal of Solid-State Circuits, vol.45, no.10, pp.1981-1991, Oct. 2010. doi: 10.1109/JSSC.2010.2058150

[21] J.W. May, and G.M. Rebeiz, “Design and characterization of W -Band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. on Microwave Theory and Techniques, vol.58, no.5, pp.1420-1430, 2010. doi: 10.1109/TMTT.2010.2042857

[22] L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-Band SiGe direct-detection-based passive imaging receiver,” IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2240-2252, Oct. 2011. doi: 10.1109/JSSC.2011.2162792

[23] L. Aluigi, T. T. Thai, M. M. Tentzeris, L. Roselli and F. Alimenti, "Chip-to-package wireless power transfer and its application to mm-Wave antennas and monolithic radiometric receivers," 2013 IEEE Radio and Wireless Symposium, Austin, TX, 2013, pp. 202-204. doi: 10.1109/RWS.2013.6486688

[24] L. Aluigi, L. Roselli, S.M. White, and F. Alimenti, “System-on-Chip 36.8 GHz radiometer for space-based observation of solar flares: feasibility study in 0.25 um SiGe BiCMOS technology,” Progress in Electromagnetics Research, vol. 130, pp. 347-368, 2012. doi: 10.2528/PIER12061101

[25] L. Aluigi, F. Alimenti, P. Gallagher, and D. Zito, “Impact of switching on design of Ka-band SoC Dicke radiometer for space detection of solar flares,” ISSC, 2015, pp. 1-4. doi: 10.1109/ISSC.2015.7163776

[26] L. Aluigi, and D. Zito, “Analysis and design of mm-wave detectors in SiGe SoC radiometers for spaceborne observations of solar flares,” IEEE Microrad, 2016, pp. 48-53. doi: 10.1109/MICRORAD.2016.7530502

[27] L. Aluigi and D. Zito, "Analysis and design of Ka-band SoC radiometer for space detection of solar flares," 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble, 2015, pp. 1-4. doi: 10.1109/NEWCAS.2015.7182070

[28] NoRP, the Nobeyama Radio Polarimeter, Nobeyama Radio Observatory, Japan. [Online]. Available: http://solar.nro.nao.ac.jp/norp/

[29] Solar Radio Astronomy at Metsähovi, Metsähovi Radio Observatory, Finland. [Online]. Available: http://metsahovi.aalto.fi/en/

[30] F. Berrilli, et al., “The ADAHELI solar mission: investigating the structure of Sun’s lower atmosphere,” Advances in Space Research, vol. 45, no. 10, pp. 1191-1202, 2010. doi: 10.1016/j.asr.2010.01.026

[31] J.A. Ratcliffe, The Magneto-Ionic Theory, Cambridge University Press, United Kingdom, 1959.

[32] S. Chandrasekhar, Radiative Transfer, Dover Publications, USA, 1960.

[33] Y.K. Chasovitin. Typhoon, Obninsk, Russia. [Online]. Available: http://www.wdcb.ru/stp/data

[34] R.S Rawrence, C.G. Little, and H.J.A. Chivers, “A survey of ionospheric effects upon earth-space radio propagation,” IEEE Proceedings, no. 1, p. 427, Jan. 1964. doi: 10.1109/PROC.1964.2737

[35] M. Tiuri, “Radio astronomy receivers,” IEEE Trans. on Antenna and Propagation, vol. 12, no. 7, pp. 930-938, Dec. 1964. doi: 10.1109/TAP.1964.1138345

[36] R.H. Dicke, “The measurement of thermal radiation at microwave frequencies,” Review of Scientific Instruments, vol. 17, pp. 268-275, Jul. 1946. doi: 10.1063/1.1770483

[37] L. Aluigi, D. Pepe, F. Alimenti and D. Zito, "K-Band SiGe System-on-Chip Radiometric Receiver for Remote Sensing of the Atmosphere," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 12, pp. 3025-3035, Dec. 2017. doi: 10.1109/TCSI.2017.2761703

[38] Aluigi, L., Alimenti, F., Pepe, D., Roselli, L., Zito, D. “MIDAS: Automated approach to design microwave integrated inductors and transformers on silicon,” (2013) Radioengineering, 22 (3), pp. 714-723.

[39] L. Aluigi, F. Alimenti and L. Roselli, "Design of a Ka-Band LNA for SoC space-based millimeter-wave radiometers," 2011 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies, Sitges, 2011, pp. 156-159. doi: 10.1109/IMWS3.2011.6061863

[40] H. Nakajima, H. Sekiguchi, M. Sawa, K. Kai, and S. Kawashima, “The radiometer and polarimeter at 80, 35, and 17 GHz for solar observations at Nobeyama,” Publ. of the Astronomical Society of Japan, vol.37, no.1, pp.163–170, 1985.

[41] Bank of Rad-Hard ADCs, MPD 2010. [Online]. Available: http://microelectronics.esa.int/mpd2010/day2/MPD2010_Bank-of-RadHard-ADCs.pdf


Refbacks

  • There are currently no refbacks.
Copyright © 2019 Luca Aluigi


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.