Experimental Simulation of Red Sprites in a Laboratory

Authors

  • Victor Tarasenko Laboratory of Optical Radiations, Institute of High Current Electronics SB RAS, Tomsk, 634055, Russia
  • Nikita Vinogradov Laboratory of Optical Radiations, Institute of High Current Electronics SB RAS, Tomsk, 634055, Russia
  • Evgenii Baksht Laboratory of Optical Radiations, Institute of High Current Electronics SB RAS, Tomsk, 634055, Russia
  • Dmitry Sorokin Laboratory of Optical Radiations, Institute of High Current Electronics SB RAS, Tomsk, 634055, Russia

DOI:

https://doi.org/10.30564/jasr.v5i3.4858

Abstract

Over the past three decades, research of high-altitude atmospheric discharges has received a lot of attention. This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure air. To initiate ionization waves in a quartz tube, an electrodeless pulseperiodic discharge fed by microsecond voltage pulses with an amplitude of a few kilovolts and a repetition rate of tens of kHz were formed. In this case ionization waves (streamers) have a length of tens of centimeters. The main plasma parameters were measured at various distances along the tube. The measurements confirm the fact that ionization waves propagate in opposite directions from the zone of the main electrodeless discharge, just as it happens during the formation of red sprites.

Keywords:

Red sprites, Experimental modeling, Streamer discharge in air, Low pressures

References

[1] Sentman, D.D., Wescott, E.M., Osborne, et al., 1995. Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophysical Research Letters. 22(10), 1205-1208.

[2] Bell, T.F., Reising, S.C., Inan, U.S., 1998. Intense continuing currents following positive cloud-toground lightning associated with red sprites. Geophysical Research Letters. 25(8), 1285-1288.

[3] Pasko V.P., 2007. Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Science and Technology. 16. S13. DOI: https://doi.org/10.1088/0963-0252/16/1/S02

[4] Rodger, C.J., 1999. Red sprites, upward lightning, and VLF perturbations. Reviews of Geophysics. 37(3), 317-336.

[5] Raizer, Y.P., Milikh, G.M., Shneider, M.N., 2010. Streamer-and leader-like processes in the upper atmosphere: Models of red sprites and blue jets. Journal of Geophysical Research: Space Physics. 115, A7. DOI: https://doi.org/10.1029/2009JA014645

[6] Neubert, T., Østgaard, N., Reglero, V., et al., 2019. The ASIM mission on the international space station. Space Science Reviews. 215(2), 1-17. DOI: https://doi.org/10.1007/s11214-019-0592-z

[7] Wang, Y., Lu, G., Ma, M., et al., 2019. Triangulation of red sprites observed above a mesoscale convective system in North China. Earth and Planetary Physics. 3(2), 111-125. DOI: https://doi.org/10.26464/epp2019015

[8] Jiang, F., Huang, C., Wang, Y., 2019. Emission spectrum of sprites caused by the quasi-electrostatic field above thunderstorm clouds. Meteorology and Atmospheric Physics. 131(3), 421-430.DOI: https://doi.org/10.1007/s00703-018-0579-4

[9] Kuo, C.L., Williams, E., Adachi, T., et al., 2021. Experimental Validation of N2 Emission Ratios in Altitude Profiles of Observed Sprites. Frontiers in Earth Science. 9, 1102. DOI: https://doi.org/10.3389/feart.2021.687989

[10] Facebook. Available online: http://www.facebook.com/frankie.lucena.1 (Accessed on 01.11.2021).

[11] Füllekrug, M., Mareev, E.A., Rycroft, M.J., (Eds.), 2006. Sprites, elves and intense lightning discharges. Springer Science & Business Media. V. 225.

[12] Kanmae, T., Stenbaek-Nielsen, H.C., McHarg, M.G., et al., 2012. Diameter-speed relation of sprite streamers. Journal of Physics D: Applied Physics. 45(27), 275203. DOI: https://doi.org/10.1088/0022-3727/45/27/275203

[13] Ebert, U., Nijdam, S., Li, C., et al., 2010. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. Journal of Geophysical Research: Space Physics. 115, A00E43. DOI: https://doi.org/10.1029/2009JA014867

[14] Wang, Y., Lu, G., Cummer, S.A., et al., 2021. Ground observation of negative sprites over a tropical thunderstorm as the embryo of Hurricane Harvey (2017). Geophysical Research Letters. 48(14), e2021GL094032. DOI:https://doi.org/e2021GL094032

[15] Williams, E.R., 2001. Sprites, elves and glow discharge tubes. Physics Today. 54(11), 41-47.

[16] Huang, A., Lu, G., Yue, J., et al., 2018. Observations of red sprites above Hurricane Matthew. Geophysical Research Letters. 45(23), 13-158. DOI: https://doi.org/10.1029/2018GL079576

[17] Stenbaek-Nielsen, H.C., McHarg, M.G., 2008. High time-resolution sprite imaging: observations and implications. Journal of Physics D: Applied Physics. 41(23), 234009. DOI: https://doi.org/10.1088/0022-3727/41/23/234009

[18] Marshall, R.A., Inan, U.S., 2007. Possible direct cloud-to-ionosphere current evidenced by sprite-initiated secondary TLEs. Geophysical research letters. 34(5). DOI: https://doi.org/10.1029/2006GL028511

[19] Kuo, C.L., Huang, T.Y., Hsu, C.M., et al., 2021. Resolving elve, halo and sprite halo images at 10,000 Fps in the Taiwan 2020 campaign. Atmosphere. 12(8), 1000. DOI: https://doi.org/10.3390/atmos12081000

[20] Kanmae, T., Stenbaek-Nielsen, H.C., McHarg, M.G., 2007. Altitude resolved sprite spectra with 3 ms temporal resolution. Geophysical Research Letters. 34(7), L07810. DOI: https://doi.org/10.1029/2006GL028608

[21] Gordillo-Va´zquez, F.J., Luque, A., Simek, M., 2012. Near infrared and ultraviolet spectra of TLEs. Journal of Geophysical Research. 117, A05329. DOI: https://doi.org/10.1029/2012JA017516

[22] Qin, J., Celestin, S., Pasko, V.P., 2012. Formation of single and double-headed streamers in sprite-halo events. Geophysical Research Letters. 39, L05810. DOI: https://doi.org/10.1029/2012GL051088

[23] Sentman, D.D., Wescott, E.M., 1993. Observations of upper atmospheric optical flashes recorded from an aircraft. Geophysical Research Letters. 20(24), 2857- 2860.

[24] Garipov, G.K., Khrenov, B.A., Klimov, P.A., et al., 2013. Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite. Journal of Geophysical Research: Atmospheres. 118(2), 370-379. DOI: https://doi.org/10.1029/2012JD017501

[25] Qin, J., Pasko, V.P., McHarg, M.G., et al., 2014. Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation. Nature communications. 5(1), 1-6. DOI: https://doi.org/10.1038/ncomms4740

[26] Anikin, N.B., Zavialova, N.A., Starikovskaia, S.M., et al., 2008. Nanosecond-discharge development in long tubes. IEEE Transactions on Plasma Science. 36(4), 902-903. DOI: https://doi.org/10.1109/TPS.2008.924504

[27] Tarasenko, V.F., Sosnin, E.A., Skakun, V.S., et al., 2017. Dynamics of apokamp-type atmospheric pressure plasma jets initiated in air by a repetitive pulsed discharge. Physics of Plasmas. 24(4), 043514. DOI: https://doi.org/10.1063/1.4981385

[28] Sosnin, E.A., Babaeva, N.Y., Kozhevnikov, et al., 2021. Modeling of transient luminous events in Earth’s middle atmosphere with apokamp discharge. Physics-Uspekhi. 64(2), 191-210. DOI: https://doi.org/10.3367/UFNe.2020.03.038735

[29] Tarasenko, V., Baksht, E., Kuznetsov, V., et al., 2020. Corona with Streamers in Atmospheric Pressure Air in a Highly Inho-mogeneous Electric Field. Journal of Atmospheric Science Research. 03(4), 28–37. DOI: https://doi.org/10.30564/jasr.v3i4.2342

[30] Tarasenko, V., Vinogradov, N., Beloplotov, D., et al., 2022. Influence of Nanoparticles and Metal Vapors on the Color of Laboratory and Atmospheric Discharges. Nanomaterials. 12(4), 652. DOI: https://doi.org/10.3390/nano12040652

[31] Tarasenko, V.F., 2022. Analysis of Dynamics of Atmospheric Discharges Using Data on Cylindrically and Spherically Shaped Streamers. Atmospheric and Oceanic Optics. 35(2), 164-167. DOI: https://doi.org/10.1134/S1024856022020154

[32] Shao, T., Tarasenko, V.F., Zhang, C., et al., 2013. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field. Review of Scientific Instruments. 84(5), 053506. DOI: https://doi.org/10.1063/1.4807154

[33] Raizer, Y.P., Allen, J.E., 1991. Gas discharge physics. Springer: Berlin.

[34] Tarasenko, V., Beloplotov, D., Burachenko, A., et al., 2020. On the Formation of a Bead Structure of Spark Channels during a Discharge in Air at Atmospheric Pressure. Journal of Atmospheric Science Research. 3(1), 1-8. DOI: https://ojs.bilpublishing.com/index.php/jasr

[35] Nassar, H., Pellerin, S., Musiol, K., et al., 2004. N2+/ N2 ratio and temperature measurements based on the first negative N2+ and second positive N2 overlapped molecular emission spectra. Journal of Physics D: Applied Physics. 37(14), 1904-1916. DOI: https://doi.org/10.1088/0022-3727/37/14/005

[36] Britun, N., Gaillard, M., Ricard, A., et al., 2007. Determination of the vibrational, rotational and electron temperatures in N2 and Ar–N2 rf discharge. Journal of Physics D: Applied Physics. 40(4), 1022-1029. DOI: https://doi.org/10.1088/0022-3727/40/4/016

[37] Paris, P., Aints, M., Valk, F., et al., 2005. Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas. Journal of Physics D: Applied Physics. 38(21), 3894-3899. DOI: https://doi.org/10.1088/0022-3727/38/21/010

[38] Ochkin, V.N., 2009. Spectroscopy of low temperature plasma. John Wiley & Sons.

[39] Phillips, D.M., 1976. Determination of gas temperature from unresolved bands in the spectrum from a nitrogen discharge. Journal of Physics D: Applied Physics. 9(3), 507-521.

[40] Laux, C.O., 2002. Physico-chemical modeling of high enthalpy and plasma flows. Lecture Series. Belgium: Rhode Saint Genèse.

[41] Sentman, D.D., Stenbaek-Nielsen, H.C., McHarg, M.G., et al., 2008. Plasma chemistry of sprite streamers. Journal of Geophysical Research: Atmospheres. 113, D11112. DOI: https://doi.org/10.1029/2007JD008941

[42] Liu, N., Pasko, V.P., 2006. Effects of photoionization on similarity properties of streamers at various pressures in air. Journal of Physics D: Applied Physics. 39(2), 327-334. DOI: https://doi.org/10.1088/0022-3727/39/2/013

[43] Stanley, M., Krehbiel, P., Brook, M., et al., 1999. High speed video of initial sprite development. Geophysical Research Letters. 26(20), 3201-3204.

[44] Cummer, S.A., Jaugey, N.C., Li, J.B., et al., 2006. Submillisecond imaging of sprite development and structure. Geophysical Research Letters. 33, L04104. DOI: https://doi.org/10.1029/2005GL024969

[45] McHarg, M.G., Stenbaek-Nielsen, H.C., Kammae, T., 2007. Observations of streamer formation in sprites. Geophysical Research Letters. 34(6), L06804. DOI: https://doi.org/10.1029/2006GL027

[46] Hervig, M., Thompson, R.E., McHugh, M., et al., 2001. First confirmation that water ice is the primary component of polar mesospheric clouds. Geophysical Research Letters. 28(6), 971-974.

[47] Bazelyan, E.M., Raizer, Y.P., 2000. Lightning physics and lightning protection, CRC Press: USA (2001, Fizmatizdat: Moscow, pp. 320).

Downloads

How to Cite

Tarasenko, V., Vinogradov, N., Baksht, E., & Sorokin, D. (2022). Experimental Simulation of Red Sprites in a Laboratory. Journal of Atmospheric Science Research, 5(3), 26–36. https://doi.org/10.30564/jasr.v5i3.4858

Issue

Article Type

Article