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1. Introduction

The practice of hot-dip galvanised steel reinforcement 
bar (HDG) in concrete has been shown to be one of the 
most durable and technically suitable coating methods for 
corrosion protection [1-3]. In this method, zinc, in the form 
of hot dip galvanizing, is applied to the surface of steel 
forming zinc-iron alloy barrier around the steel which 
delays the onset of corrosion of the steel and enhances 

the durability of the concrete. HDG offers multifold 
advantages including substantially higher chloride 
threshold and lower corrosion rate for zinc corrosion in 
concrete than conventional steel. Furthermore, zinc’s 
sacrificial action protects the steel even if the coating 
barrier is damaged. 

However, HDG did not get wide acceptance in the 
past because inconsistent and contradictory results were 
observed under some conditions and environments [4-6].  
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This paper focuses on methodological issues relevant to corrosion risk 
prediction models. A model was developed for the prediction of corrosion 
rates associated with hot-dip galvanised reinforcement bar material in 
concrete exposed to carbonation and chlorides in outdoor environment. 
One-year follow-up experiments, over five years, were conducted at various 
carbonation depths and chloride contents. The observed dependence of 
corrosion rate on the depth of carbonation and chloride content is complex 
indicating that the interaction between the carbonation and chloride 
influencing the corrosion. A non-linear corrosion model was proposed 
with statistical analysis to model the relationship between the corrosion 
rate and the test parameters. The main methodological contributions 
are (i) the proposed modeling approach able to take into account the 
uncertain measurement errors including unobserved systematic and 
random heterogeneity over different measured specimens and correlation 
for the same specimen across different measuring times, which best suits 
the measurement data; (ii) the developed model in which an interaction 
parameter is introduced especially to account for the contribution and the 
degree of the unobserved carbonation-chloride interaction. The proposed 
model offers greater flexibility for the modelling of measurement data than 
traditional models. 
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Uncertainties exist in the literature related to the effectiveness 
of HDG as a long-term inhibition for chlorides and 
carbonation induced corrosion. The controversy arises due 
to several reasons. One obvious reason is the exposure 
to oxygen, carbon dioxide, chlorides, water and other 
chemical exposures in an actual environment that the 
relation between environmental exposures and corrosion 
status can be quite complex. For example, at high PH-
value conditions, corrosion may start at very low 
chloride content due to the zinc’s instability at high 
PH-values. The corrosion attack is determined by the 
relevant environmental exposures, their interactions 
and time. Therefore, it has stated that laboratory results 
must be viewed with caution due to the fact that the 
simulated environment might not fully match the actual 
environments [5]. However, although complex, it has been 
well recognized that chlorides and carbonation are the two 
main causes for corrosion of steel in concrete. Aggressive 
substances of chlorides and carbon dioxide under certain 
environments, such as temperature and moisture, are the 
key risk factors. The presence of chlorides and carbon 
dioxide can lead to the breakdown of the steel’s passivity 
which affects the inhibitive properties of the coating zinc 
and causes spalling of the concrete over corroded steel 
and, consequently, structural breakage. 

Chloride and/or carbonation induced corrosion 
models, have been used extensively to predict the 
corrosion rate (see reviews [7-8]). Models can be classified 
as physical-based (or process-based) and data-driven 
methods generally. Physical-based methods use explicit 
mathematical equations to model evolution of the 
corrosion rate. Data-driven methods use measurement 
data to build up statistical models for predicting the 
corrosion process based on empirical relationships 
between corrosion rate and input parameters. Both models 
have their merits and demerits and challenges still exist in 
the current state-of-the-art corrosion modeling. A major 
limitation is the large gap between the general corrosion 
models, dominated by physically-based approaches, and 
the understanding of complexes encountered in real world 
situations. For example, time-dependent characteristic 
of the chloride concentration, or carbonation levels, at a 
concrete surface has been rarely considered in predicting 
the chloride or the carbonation ingress [9]. Data-driven 
modelling approaches are becoming more popular due 
to the increasing availability of measurement tools and 
data; however, methodological problems exist with such 
approaches because interpreting experimental findings 
strongly depend on the features of the data and the 
statistical methods for analyzing the data. For example, 
many measurement data involve multiple measures on 

each specimen. The correlated measures within specimens 
are not always considered in many studies. Moreover, 
correlation derived risk models for the in-service 
conditions are rare [10]. Not surprisingly, few reports have 
taken into account the complexity added by the interaction 
between chloride and carbonation in corrosion models. 
For risk assessment, the interaction between chloride and 
carbonation has a great influence on corrosion process 
and understanding the behavior of chloride, carbonation 
and their interaction is important for understanding how 
they induce the corrosion process [11]. The corrosion risk 
significantly increases when the concrete is exposed to 
both substances [11]. 

The purpose of this paper is to develop a correlation 
derived risk model for the prediction of the corrosion rate 
to address thesemethodological issues. The model predicts 
corrosion rates for hot-dip galvanised reinforcement bar 
material in concrete exposed to carbonation and chlorides 
in real world situations with regard to atmospheric 
attack in an outdoor environment. Long-term follow-up 
measurement data, one-year follow-up experiments for 
over five years, were conducted at various carbonation 
depths and chloride contents. A non-linear corrosion 
model was proposed with statistical analysis to model 
the relationship between the corrosion rate and the test 
parameters. From the methodological point of view, 
the main contribution of the present work consists in 
the approach developed to deal with the measurement 
errors including unobserved systematic and random 
heterogeneity over different measured specimens and 
correlation for the same specimen across different 
measuring times. Such issues are often neglected in 
the literature. Secondly, an interaction parameter was 
introduced especially to account for the contribution 
and the degree of the unobserved carbonation-chloride 
interaction. The proposed model offers greater flexibility 
for the modelling of measurement data than traditional 
models. 

2. Methods and Materials

2.1 Measurement Data

The measurement data used in this study were collected 
from seven-year long-term follow up measurement. 
The data include 336 specimens of hot-dip galvanized 
reinforcement bar material in concrete exposed to 
carbonation and chlorides in real world situations with 
regard to atmospheric attack in outdoor environment. 
Corrosion rates on the depth of carbonation and chloride 
content were measured using PH indicator sprayed onto 
the freshly broken surface, which was possible to measure 
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the carbonation depth after a few minutes. The detailed 
experimental procedure can be referred from the paper [12].

2.2 Model

The proposed model predicts the corrosion rate given 
environmental exposures under real outdoor condition (i.e. 
different chloride concentration, carbonation level, etc). 
Since corrosion processes are complex which involves 
multiple environmental parameters, their interactions with 
each other and many uncertainties, the development of the 
model involved two stages. In the first stage, a suitable 
model structure and key risk parameters were selected 
using the Akaike information criterion [13]. In the second 
stage, the model equation was formulated. The proposed 
model has several new features that extend the current 
corrosion models in the literature: 

(1) The model predicts time dependent corrosion rate 
base on full historical corrosion data; 

(2) The model identifies the important environmental 
parameters as key risk conditions;

(3) The model takes into account the random and 
uncertain nature of different specimens and parameters 
over time. 

(4) The model accounts for correlation among 
measured outcomes over time in the same specimen. 

The model equation is based on a multivariate 
nonlinear regression as

ycorr
it = a0 + a1 t  + β1 x

CH
it + β2 x

CO2
it + β3 x

CH
it . x

CO2 +γ1 
xR

it +ui +εit (1)
where

- ycorr
it presents the corrosion rate for the i-th specimen 

at time t
- xCH

it is the chloride content for the i-th specimen at 
time t

- xCO2it is the carbonation level for the i-th specimen at 
time t

- xR
it is the corrosion resistance for the i-th specimen at 

time t
- ui is the random effect by specimens
-εit presents the measurement errors, random noise and 

other source of uncertainties
- a, β and γ are the model coefficients
- t represents the time
The model emphasizes the following aspects:
● accounts the random and uncertain nature of 

different specimens presented using random variable 
ui

● accounts for correlation among measured outcomes 
over time in the same specimen: correlation (ycorr

it, 
ycor

rit’) ≠ 0 

● accounts for all the measurement and modeling 
uncertainties using a stochastic variable εit. 

The model relaxes the restriction that the measurements 
taken at different times for the same specimen are not 
correlated. Such uncorrelated restriction is one of the most 
common assumptions made in many corrosion models 
which can lead to misleading inferences because there is 
a good reason to believe that the correlations exist among 
the measurements for the same specimen at different 
time. For example, an average correlation coefficient for 
the corrosion rate measures of the same specimen is 0.5, 
which shows strong correlations. We shall demonstrate 
below in the discussion section that it is inaccurate and 
misleading to draw conclusions if such correlations are 
ignored. The correlation structure for the same specimen 
i was modeled as sphericity characteristic meaning that 
correlations of the measures for the same specimen are the 
same. 

It can be seen that the model is a dynamic model in 
specimen and time. The novelty and generalization of 
the proposed model lie in the application of these new 
features. The model coefficients, a, β and γ , determine 
the effects on corrosion rates of their correspondent 
model parameters or environmental factors which were 
calculated by Maximum likelihood method (MLE) [14]. 
MLE provides better and more accurate results than 
least square method in general. Furthermore, time series 
analysis technique was used to test for the statistical 
significance of the effect of the estimate. Statistical 
significance is a statistical assessment of the probability 
that the relationship exists which presents the accuracy 
of the model. The significance is measured using p-value. 
Confidence interval (p < 0.05) was chosen as probability 
threshold for the statistical significance for the confidence 
level. After determining the significant parameters, the 
final models were developed incorporating only these 
parameters for different corrosion measurement outputs. 
The results are presented in the third section. 

3. Results

Table 1 shows the results. Effect estimates are presented 
as 95% confidence intervals. p-values are provided which 
show the statistical significance of the effect estimates. For 
example, p<0.01 means 99% probability the true effect 
lies in that estimated interval. The sign of the estimate 
depends on the sign of the estimated slope of the model 
parameter. A positive sign means a positive correlation 
between the parameter and the model output. 

Table 1 shows that chloride concentration, carbonation 
level, chloride-carbonation interaction, crack width and 
pH concentration were strongly predictive of corrosion 
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rate. Chloride concentration, carbonation depth and 
crack width had the same, or nearly the same, significant 
positive effect per unit on corrosion rate. Increased 
chloride concentration, carbonation depth and crack 
width had progressively increasing effect on ycorr. The 
results indicate the PH concentration could induce the 
increase of the corrosion rate too. An interesting result 
was obtained here regarding the chloride-carbonation 
interaction. The interaction was found to have a significant 
impact on corrosion rate. Association between ycorr and 
the interaction depended on the levels of both factors. 
Roughly speaking, ycorr can be expected to change by 
1.8+0.35x when chloride concentration increases by 1 
given x depth of carbonation. The increase of ycorr is about 
1.4+0.35CH when carbonation depth increases by 1 given 
CH concentration of chloride.

For higher concentration of CH, significant higher ycorr 

was present at higher levels of carbonation (13 mm depth) 
than at lower level of carbonation (11 mm). The study also 
shows that ycorr is in inverse proportion with the square-
root of exposure time. The increase of ycorr slows down in 
time. 

Corrosion rate has shown to be strongly dependent 
on chloride concentration, carbonation level, PH 
concentration but has a weak dependence on crack growth 
(significance at the 8% level). Increases of carbonation, 
pH values and crack width have been found to potentially 
increase the corrosion rate. At pH 7-8 (the average pH 
used in this study) the corrosion potential decreases 
significantly with the increase of chloride concentrations. 

From the experiments it is not apparent that the exposure 
times are correlated with ycorr.

4. Discussion 

4.1 Methodological Issues 

One of the most striking features of the proposed 
methodology is that it allows for taking into account 
the uncertain measurement errors including unobserved 
systematic and random heterogeneity over different 
measured specimens and correlation for the same 
specimen across different measuring times, which best 
suits the measurement data. Misleading inferences could 
be obtained if we neglect such measuring correlations 
within specimens. Figure 1 illustrates the specimen-based 
corrosion rate changes in our experimental data which 
are subject to random fluctuations. A linear regression 
trend line fitted to all the specimens’ lines is displayed in 
the figure which roughly shows a positive relationship 
between carbonation depth variation and corrosion rate. 
Therefore, simple regression models fail to capture 
randomness between-specimen fluctuations and the 
correlations within specimen. The model’s standard errors 
are biased and the model results are inaccurate. Because 
of space limitations, we only show the comparison 
results for ycorr. Such inaccurate predictions existed in the 
calculation of other corrosion outputs as well.

The presence of the correlations among ycorr measures 
for the same specimen introduces methodological 
problems in significance testing. The correlations 

Table 1. Significance Analysis of the Independent Variable

Parameter Estimate Standard Error df t Sig.
95% Confidence Interval

Lower Bound Upper Bound

a0 -512,332810 96,613337 1224,352 -5,303 0,000 -701,878848 -322,786772

t -172,593211 113,573595 1247,640 -1,520 0,129 -395,409522 50,223100

xCH -14,575465 5,515497 372,582 -2,643 0,009 -25,420871 -3,730058

xCO2 27,867155 11,444345 344,743 2,435 0,015 5,357627 50,376684

xCH xCO2 -4,378792 3,431653 532,164 -1,276 0,203 -11,120040 2,362456

xR 75,400366 37,197950 1088,903 2,027 0,043 2,412597 148,388135

Table 2. Parameter Estimates (Dependent Variable: ycorr)

Parameter Value Standard Error t Sig.
95% Confidence Interval

Lower Bound Upper Bound

a0 -126,373 87,521 -1,444 0,149 -298,056 45,310

t -638,260 103,055 -6,193 0,000 -840,415 -436,104

xCH -28,219 3,553 -7,942 0,000 -35,188 -21,249

xCO2 -19,066 6,026 -3,164 0,002 -30,887 -7,246

xCHxCO2 -4,968 2,107 -2,358 0,019 -9,102 -0,835

xR -23,967 35,353 -0,678 0,498 -93,316 45,382
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indicate nested sources of variation. If we ignore it, 
we underestimate the error variance of the estimated 
coefficients and inflate the significance levels. This can 
increase the likelihood of a Type I error. The existence of 
such correlations has been rarely been taken into account 
in the corrosion models. 

4.2 Chloride and Carbonation Interaction

The interaction effect between chloride and carbonation 
on corrosion rate was identified in this study. Although 
research on this topic is lacking because most studies 
have focused on the chloride and carbonation penetrations 
independently, relatively few studies have demonstrated 
that their combination could lead to rapid deterioration [15]. 
Therefore, these results are consistent with the large body 
of scientific evidence although there are disputes on some 
levels in the literature. 

The change of structure due to carbonation can reduce 
the binding capacity of the solid phase in concrete leading 
to a higher amount of free chlorides in the pore solution. 
The coexistence of chloride and carbonation is related 
to the effect of carbonation on the liberation of bound 
chlorides leading to a higher penetration rate and higher 
corrosion rate. However, for chloride, penetration only 
occurs in pores that contain water which is completely 
different from that of carbonation [16]. One report 
suggested that once the carbonation front reaches the rebar 
location. The chloride concentration threshold needed to 
initiate corrosion could be significantly reduced [17]. 

5. Conclusions

Corrosion risk prediction models of concrete structures 
have been widely studied in the literature. This paper 
developed a model for the prediction of corrosion rates 
associated with hot-dip galvanised reinforcement bar 
material in concrete exposed to carbonation and chlorides 
in outdoor environment. Our proposed modelling approach 
adds some new methodological aspects to these important 
studies, namely, (i) able to take into account the uncertain 
measurement errors including unobserved systematic and 
random heterogeneity over different measured specimens 
and correlation for the same specimen across different 
measuring times, which best suits the measurement data; 
(ii) detailed study of the contribution and the degree of the 
unobserved carbonation-chloride interaction.

Among the study factors, chloride, carbonation, 
chloride-carbonation interaction, crack width, pH 
concentration and exposure time were found to be 
associated with the corrosion risk. This is the first study 
accounting for randomness between-specimen fluctuations 
and the correlations within specimen and experimental 
finding indicating that the chloride-carbonation interaction 
has noticeable effect on corrosion. Our study results 
suggest that there is potential for reducing corrosion risk 
by controlling the risk factors.

Finally, the developed model offers greater flexibility 
for the modelling of corrosion data and the proposed 
modeling approach is easily implemented in common 
statistical software packages with small computational 
load. 

Figure 1. The specimen-based corrosion rate variation vs carbonation depth. Circles represent the specimens. Large 
variation in specimen can be observed. A linear relationship indicates a correlation between them.
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