Toxic Effect of Different Neem Formulations against Pests and Mammals

Authors

  • Nadia Zikry Dimetry Department of Pests and Plant Protection, National Research Centre, El-Bohouth St., Dokki, Cairo,12622, Egypt

DOI:

https://doi.org/10.30564/jrb.v2i3.2032

Abstract

Neem (Azadirachta indica A. Juss), prominently known as conventional medication is a local plant in India. Neem is regarded as a promising tree species which can be utilized in variety ways to benefit agricultural communities throughout the world. Neem based insect sprays were productive for the control of different insect species, yet their low lingering impact and absence of normalized definitions are issues for field application. Additionally, neem is fairly have harmful impact in nature. The use of nanotechnology as a mean for nanopesticides is in the beginning time of improvement. All things considered, the nanosphere definition demonstrated upgraded systemicity of the dynamic fixings and made its infiltration better in the plant, because of their little size. Nanoencapsulated pesticides can give controlled discharge energy, while proficiently upgrading piousness, dependability, and solvency. Nanoencapsulation can improve the vermin control proficiency over expanded spans by forestalling debasement of dynamic fixings under ecological conditions. This survey is hence composed to fundamentally evaluate the toxicological impacts i.e to examine the manifestations, systems and identifications of poisoning vertebrates particularly people. The prepared neem nano-plants contrasted with the bulk one have will be assessed on albino mice through two main approaches, i.e. determination of acute oral LD50 and study the toxic effect of sublethal dose (LD10) on some biochemical parameters. The effect of the prepared nano-formulations compared to the bulk one on various biomarkers, i.e. hematological, hepatotoxicity and nephrotoxicity in albino mice after an oral administration of sub-lethal dose during sub-acute treatment were taken in consideration. Hence, this review should thus offer an important guide for building up potential advantages are underlined, while little is known on security or the antagonistic impacts of nanoadvances in the agro-foodsystem.

Keywords:

Neem, Toxicity, Nano formulations, Non Target Organisms

References

[1] Aktar, M.W., D. Sengupta, A. Chowdhury. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplin. Toxicol., 2009, 2: 1-12.

[2] Pan-UK. Current Pesticide Spectrum, Global Use and Major Concerns. http://www.pan-uk.org/briefing/SIDA_Fil/Chap1.html (january 18, 2003)

[3] Koul,O., S.Walia, G.S. Dhaliwal. Essential oils as green pesticides. Potential and constrains. Biopestic. Int., 2008, 4(1): 63-84.

[4] Siqueira H.A.A., Guedes R.N.C., Picanco M.C. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agricultural and Forest Entomology, 2000, 2 (2): 147-153. DOI: https://doi.org/10.1046/j.1461-9563.2000.00062.x

[5] Siqueira H.A.A., Guedes R.N.C.;, Fragoso D.B., Magalhaes L.C. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management, 2001, 47(4): 247-251. DOI: https://doi.org/10.1080/09670870110044634

[6] Reyes M., Rocha K., Alarcón L., Siegwart M., Sauphanor B. Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick)(Lepidoptera:Gelechiidae) to spinosad. Pesticide Biochemistry and Physiology, 2012, 102(1): 45-50. https://doi.org/10.1016/j.pestbp.2011.10.008

[7] Campos M.R., Silva T.B., Silva W.M., Silva J.E., Siqueira H.A.A. Spinosyn resistance in the tomato borer Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Journal of Pest. Science, 2015, 88: 405-412. DOI: https://doi.org/10.1007/s10340-014-0618-y

[8] Haddi K., Berger M., Bielza P., Rapisarda C., Wil-liamson M.S., Moores G., Bass C. Mutation in the ace-1 gene of the tomato leaf miner (Tuta absoluta) associated with organophosphates resistance. Journal of Applied Entomology, 2017, 141(8): 612-619. DOI: https://doi.org/10.1111/jen.12386

[9] Zibaee I., Mahmood K., Esmaeily M., Bandani A.R., Kristensen M. Organophosphate and pyrethroid resistances in the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) from Iran. Journal of Applied Entomology, 2018, 142(1-2): 181-191.

[10] Guedes R.N.C., Roditakis E., Campos M.R., Haddi K., Bielza P., Siqueira H.A.A., Tsagkarakou A., Vontas J., Nauen R. Insecticide resistance in the tomato pinworm. Tuta absoluta: patterns, spread, mechanisms, management and outlook. Journal of Pest Science, 2019, 92(4): 1329-1342. DOI: https://doi.org/10.1007/s10340-019-01086-9

[11] Anofi Omotayo Tom Ashafa, Latifat Olubukola Orekoya, Musa Toyin Yakubu. Toxicity profile of ethanolic extract of Azadirachta indica stem bark in male Wistar rats. Asian Pac J Trop Biomed. 2012, 2(10): 811-817. DOI: https://doi.org/10.1016/S2221-1691(12)60234-2

[12] Duarte, J.L., J.R.R. Amado, A.E.M.F.M. Oliveira, R.A.S. Cruz, A.M. Ferreira et al., “Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev. Bras. Farmacogn., 2015, 189-192.

[13] Ebadollahi, A. Iranian plant essential oils as sources of natural insecticide agents. Int. J. Biol. Chem., 2011, 53: 266-290.

[14] Ehsanfar, S., S.A. Modarres-Sanavy. Crop protection by seed coating. Commun. Agric. Applied Biol. Sci., 2004, 70: 225-229.

[15] Elaissi, A., Z. Rouis., N. Abid Ben Salem, S. Mabrouk, Youssef ben Salem et al. Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement. Altern. Med., 2012, 12. DOI: https://doi.org/10.1186/1472-6882-12-81

[16] Dimetry, N.Z. Prospects of botanical pesticides for the future in integrated pest management program (IPM) with special reference to neem uses in Egypt. Archive of Phytopathology and Plant Protection, 2012, 45: 1138-1161.

[17] Dimetry, N.Z., A.Y. El-Laithy, A.M.E. Abd El-salam, A.E. El-Saiedy. Management of the major piercing sucking pests infesting cucumber under plastic house conditions. Archives of Phytopathology and Plant Protection, 2013, 46: 158-171.

[18] Mubayi, A., S. Chatterji, P.M. Rai, G. Watal. Evidence based green synthesis of nanoparticles. Advanced Materials Methods., 2012, 3(6): 519-525.

[19] Raveendran, P., J. Fu, S.L. Wallen. A simple and ‘‘green’’ method for the synthesis of Au, Ag, and AuAg alloy nanoparticles. Green Chem., 2006, 8: 34 -38.

[20] Ghormade, V., V. D. Mukund, M.P. Kishore. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech. Adv.,2011, 29: 792 -803.

[21] Anjali, C.H., S.S. Khan, K.M. Goshen, S. Magdassi, A. Mukherjee, V. Chandrasekaran. Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicology and Environmental Safety, 2010, 73: 1932-1936.

[22] Anjali, C.H., Y. Sharma, A. Mukherjee, N. Chandrasekaran. Neem oil (Azadirachta indica) nanoemulsion as potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci, 2012 68(2): 158- 163.

[23] Frederiksen, H.K., H.G. Kristensen, M. Pedersen. Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin-incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J. Control. Release., 2003, 86: 243-252.

[24] Bouwmeester, H., S. Dekkers, M.Y. Noordam, W.I. Hagens, A.S. Bulder, D. Heer, S. E.C. Ten Voorde, S.W.P. Wijnhoven, A. Marvin; H.J.P. Adriënne, J.A.M. Sips. Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 2009, 53: 52-62.

[25] Amoabeng, B.W., G.M. Gurr, C.W. Gitau, H.I. Nicol, L. Munyakazi, P.C. Stevenson. Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests. Plos one, 2013, 8(10): 1371-1382.

[26] Connolly, J. Chemistry of the limonoids of the Meliaceae and Cneoraceae. In Chemistry and Chemical Taxonomy of the Rutales, (.eds P. G. Waterman and M. F. Grunden), 1983: 175-213.

[27] Schmutterer, H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu. Rev. Entomol., 1990, 35: 271-297.

[28] Kraus W., Cramer R., Bokel M., Sawitzki, G. New insect antifeedant from Azadirachta indica and Melia azedarach. In Schmutterer H., Ascher KRS, Remboldt H. Proc. 1st Neem Conf. Rottach- Egern,1981, 53 - 62.

[29] Roy, A., S. Saraf. Limonoids: overview of significant bioactive. Nature, 2006, 363: 685 -693.

[30] Satasook, C., M.B. Isman, P. Wiriyachitra. Activity of rocaglamide, an insecticidal natural product, against the variegated cutworm, Peridroma saucia (Lepidoptera: Noctuidae). Pestic. Sci.,1992, 36: 53-58.

[31] Mordue, A. J., Blackwell, A. Azadirachtin: an update. J. Insect Physiol.,1993, 39: 903-924.

[32] Ragasa, C.Y., Z.D. Nacpil, G.M. Natividad, M. Tada, J.C. Coll, J.A. Rideout, Tetranortriterpenoids from Azadirachta Indica. Journal of Phytochemistry, 1997, 46: 555-558.

[33] Champagne, D. E., M.B. Isman, G.N. Towers. Insecticidal activity of phytochemicals and extracts of the Meliaceae. Insecticides Plant Orig.,1989, 387: 95- 109. (London: Academic Press)

[34] Jacobson, M. Botanical Insecticides Past, Present and Future, In: Philogene BJR, Morand P, (Eds.), Insecticidal of Plant Origin. Am Chem Soc Symp Ser., Washington, DC, 1986, 387.

[35] Saxena, R.C. Insecticides from Neem. In: Insecticides of plant origin. Arnason, J. T., Philogene, B.J.R., Morand, P. (Eds). American Chemical Society, Washington., 1989: 110-135.

[36] Kumar, J., B.S. Parmar. Physicochemical and chemical variation in neem oils and some bioactivity leads against Spodoptera litura F. J. Agric. Food Chem.,1996, 44: 2137-2143.

[37] Isman, M.B. Botanical insecticides, deterrent and repellents in modern agriculture and an increasingly regulated world. Ann Rev Entomic, 2006, 51: 45-66.

[38] Schmutterer, H. The neem tree (Azadirachta indica) and other Meliceous plants. In Source of Unique Natural Products for Integrated Pest Management, Medicine, Industry and other porposes. 1st edition. Mumbai: Neem Foundation, 2002.

[39] Peshin R., Dhawan A.K. Integrated pest management. Innovation-Development Process. Cornell University, Ithaca, United States, 2009.

[40] Rao, B.R., P. Rajasekhar, M. Venkataiah, N.V. Rao, Bio-efficacy of “Neem Azal” (azadirachtin 10,000 ppm) against cotton bollworm, Helicoverpa armigera (Hübner). Journal of Entomological Research, 1995, 19(4): 329-333.

[41] Dimetry, Nadia Z., Amin A.H., Bayoumi A.E., Abdel-Raheem M.A., Youssef, Dalia. Comparative toxicity of neem and peppermint oils nano-formulations against Agrotis ipsilon (Hufn.) larvae ( Lepidoptera: Noctuidae). Journal of Botanical Research, 2019, 1(1): 13-19. DOI: https://doi.org/10.30564/jrb.Nlil.590

[42] Amin, Abdel Rahman, H., A.E., Bayoumi, Dimetry, Nadia Z., Youssef, Dalia, A. Efficiency of Nano formulations of Neem and Peppermint Oils on the Bionomics and enzymatic Activities of Agrotis ipsilon Larvae (Lepidoptera: Noctuidae). International Journal of Natural Resource Ecology and Management, 2019, 4(5): 102-112. DOI: https://doi.org/10.11648/j.ijnrem.20190405.11

[43] Isman, M.B., C.M. Machial. Pesticides based on plant essential oils: from traditional practice to commercialization. In M. Rai and M.C. Carpinella (eds.), Naturally Occurring Bioactive Compounds, Elsevier, BV, 2006: 29-44.

[44] Nwachukwu, N., Igwenyi, I. Influence of extraction methods on the hepatotoxicity of A. indica root. J Res Biosci. 2006, 2: 10-23. [Google Scholar]

[45] Deng, Yun-xia, Cao, Mei, Shi, Dong-xia, Yin, Zhongqiong, Jia, Ren-yong, Xu, Jiao, Wang, Chuan, Lv, Cheng, Liang, Xiao-xia, He, Chang-liang, Yang, Zhirong, Zhao, Jian. Toxicological evaluation of neem (Azadirachta indica) oil acute and sub-acute toxicity. Environ. Toxicol. Pharmacol., 2013, 35(2): 240-246.

[46] Ajay Mishra, Nikhil Dave. Neem oil poisoning: Case report of an adult with toxic encephalopathy. Indian J. Crit Care Med., 2013: 17(5): 321-322. DOI: https://doi.org/10.4103/0972-5229.120330

[47] Raj, A. Toxicological effect of Azadirachta indica. As. J. Multidisciplinary Studies, 2014, 2(9): 29-33.

[48] Rafeeq Alam Khan, Maryam Aslam, Shadab Ahmed. Evaluation of Toxicological Profile of a Polyherbal Formulation. Scientific Research, 2016, 7(1). DOI: https://doi.org/10.4236/pp.2016.71008

[49] Ali, B.H., Salih, A.M.M. Suspected Azadirachta toxicity in sheep (Letter). Veterinary Record, 1982, 111(494).

[50] Ali, B.H., The toxicity of Azadirachta indica leaves in goats and guinea pigs”. Veterinary human Toxicology, 1987, 29: 16-19.

[51] Thompson, E.B., Anderson, C.C. Cardiovascular effects of Neem extract. Journal Pharmaceutical Sciences, 1978, 67: 1476-1478.

[52] Debnath, N., S.Das, D. Seth, R. Chandra, S. C. Bhattacharya, A. Goswami. Entomotoxic effect of silica nanoparticles against Sitophilus oryza ( L.). J. Pest. Sci., 2011, 84: 99-105.

[53] Leiderer P., DekorsyT. Interactions of nanoparticles and surfaces tag der mAundlichen Pr Aufung. 25. April 2008, URL: http://www.ub.uniknostanz.de/kops/volltexte/5387/; URN: http://nbn-resolving.de/urn:nbn:de:352-opus-53877

[54] Taylor R., Walton DRM. The chemistry of fullerenes. Nature, 1993, 363: 685-693

[55] Podsiadlo, P., Kaushik A.K., Arruda EM, Waas, A.M., Shim BS, Xu J., Nandivada H., Pumplin BG; Lahann J., Ramamoorthy, A., Kotov, N.A. Ultrastrong and stiff layered polymer nanocomposities. Science, 2007, 318(5847): 80 - 83.

[56] Henkes,Y.A.E., Chris Bauer, J., Schaak, R.E. Nano-crystal conversion chemistry: a unified and materials-general strategy for the template- based synthesis of nano crystalline solids. Journal of Solid State Chemistry, 2008, 181(7): 1509-1523.

[57] Kong, L., Tang, J., Wang, Y., Wang, L., Cong, F. Fluorescent nano Blocks of lanthanide complexes on nanosilicon dioxide and carbon nano tube donors with ligand- antenna integration (ALI) structure. Materials Science and Engineering C, 2009, 29(1): 85-91.

[58] Mehta, R.J., Zhang Y., Karthik C., Singh B., Siegel RW., Borca-Tasciuc T., Ramanath, G. A new class of doped nanobulk high-fiogure-of-merit thermorelectrics by scalable bottom -up” assembly Nat Mater. 2012, 10, 11(3): 233 -240. DOI: https://doi.org/10.1038/nmat3213

[59] Kamaraj, C., P. R. Gandhi, G. Elango, S. Karthi, M. Chunge, G. Rajakumar. Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). International Journal of Biological Macromolecules, 2018, 107: 59-69.

[60] Dimetry, Nadia Z., A.H. Amin, A. E. Bayoumi, E. M. Hoballah, Dalia A. Youssef. Neem Nano Formulations as a Green Revolution in the Future For Controlling The Cotton Leaworm (Spodoptera oflittoralis) ( BOISD.). Int. Conf. on Agriculture, Forestry and Life Sciences, 6 - 8, 2018: 257-272.

[61] Kalaitzaki, A., N.E. Papanikolaou, F. Karamaouna, V. Dourtoglou, A. Xenakis, V. Papadimitriou. Biocompatible colloidal dispersions as potential formulations of natural pyrethrins: a structural and efficacy study. Langmuir, 2015, 31(21): 5722-5730.

[62] Papanikolaou, A.D., I. Kuhn, M. Frenzel, O. Sech-weiger. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J. Appl. Ecol., 2017, 54: 527-536.

[63] Buzea, C., I.I. Pacheco, K. Robbie. Nanomaterials and nanoparticles: sources and toxicity. Biointerphase, 2 (4): 17 - 71.

[64] Dimetry, Nadia Z., Hussein, Hany M. Role of nanotechnology in agriculture with special reference to pest control. Int. J. Pharm Tech Research CODEN (USA): IJPRIF, 2016, 9(10): 121-144. ISSN (Online): 2455-9563

[65] Bayuomi, A.E. Nanoparticles: their risks and Hazards. King Saud University for Scientific Publication and Printing, Riadh, Kingdom of Saudi Arabia: 491. ( In Arabic)

[66] Mossa, Abdel-Tawab, Halim, Nilly Ahmed Hassan Abdelfattah, Samia Mostafa Mohamed Mohafrash. Nanoemulsion of Camphor (Eucalyptus globulus) Essential Oil, Formulation, Characterization and Insecticidal Activity against Wheat Weevil, Sitophilus granaries. Asian Journal of Crop Science, 2017, 9: 50-62. DOI: https://doi.org/10.3923/ajcs.2017.50.62

[67] Yamamoto, I., J.E. Casida. Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Springer, Tokyo, 1999: 300. ISBN: 978-4-431-70213-9

[68] Yang, F.L., X.G. Li, F. Zhu, C.L. Lei. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 2009, 57: 10156-10162. CrossRef | Direct Link.

[69] Yang, Y.C., H.C. Choi, W.S. Choi, J.M. Clark, Y.J. Ahn. Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem., 2004, 52: 2507-2511.

[70] Anonymous. Acute toxicity safety emporium. Archived from the original Material Safety Data Sheet (MSDS), 2006.

[71] Anonymous. Board on science and technology for international development, National Research Council Report of ad hok panel on neem, a tree for solving global problem. National Academy Press, Washington D.C. 1992, 60-113.

[72] Pillai, N.R., G. Santhakumari. Toxicity studies on nimbidin, a potential antiulcer drug. Planta Medica, 1984, 50: 146-148.

[73] Niemann, L., Hilbig. Neem seeds extracts as an example for health evaluation of naturally occurring substances to be applied in plant protection. Gesund Pflanzen, 2000, 52(5): 135 -141.

[74] Raizada, R.B., M.K. Srivastava, R.A. Kaushal, R.P. Singh. Azadirachtin, a neem biopesticide: Subchronic toxicity assesment in rats. Food and chemical toxicology, 2001, 39: 477-483.

[75] Dorababu, M., M.C. Joshi, G. Bhawani, M. M. Kumar;, A. Chaturvedi, R.K. Goel. Effect of aqueous extract of neem (azadirachta indica) leaves on offensive and diffensive gastric mucosal factors in rats. Indian J. Physiol. Pharmacol., 2006, 50(3): 241-249

[76] Wang, B., W.Y. Feng, M. Wang, T.C. Wang, Y.Q. Gu, M.T. Zhu. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice”. J Nanopart Res, 2008, 10: 263- 276.

[77] Kong, T., S. Zhang, J. Zhang, Z. Hao1, F. Yang, C. Zhang, Z. Yang, M. Zhang, J. Wang. Acute and cumulative effects of unmodified 50-nm nano-ZnO on mice. Springer nature, 2018, 180: 124-134.

[78] Yousef, Dalia A.; Bayoumi, A.E.; Dimetry, N.Z.; Amin,A.H. and Hoballah,E.M, “Evaluating Effect of Pepper Mint Oil (Mentha pipreta) and its NanoFormulations on some Enzym atic Activities and Bionomics of Cotton Leaf Worm Spodoptera littoralis ( Boisd.)” Arab Univ., J. Agric Sci., Ain Shams Univ., Cairo, Special Issue, 2018, 26 (2 C), 1977- 1991.

[79] Ray, A., B.D. Banerjee, P. Sen. Modulation of humoral and cell-mediated immune responses by Azadirachta indica ( neem ) in mice. Indian J. Exp. Biol., 1996, 34: 698-701.

[80] Panda, S., A. Kar. How safe is neem extract with respect to thyroid function in male mice. Pharmacol. Res., 2000, 41(4): 419- 422.

[81] Khosla, P., Bhanwra, J. Singh, S. Seth and R.K. Srivastava. A study of hypoglycamic effects of Azadirachta indica ( Neem) in normal and alloxan diabetic rabbits. Indian J. Physiol. Pharmacol., 2000, 44: 69-74.

[82] Abdel Megeed, M.I., U.M. Radwan, A.Z. Hindy, A. El Zarook. Liver functions under stress of certain common pesticides residue used on fruits and vegetables orally administrated. Annals of Agricultural Science Cairo, 2001, 46: 383-404.

[83] Dehghan, M. H., T. Martin, R. Dehghanan. Antifertility effect of Iranian neem seed alcoholic extract on epididymal sperm of mice. Iranian Journal of Reproductive Medicine, 2005, 3(2): 83-89.

[84] Haque, E, I. Mandal, S. Pal, R. Baral. Prophylactic Dose of Neem ( Azadirachta indica ) Leaf Preparation Restricting Murine Tumor Growth is Nontoxic, Hematostimulatory and Immunostimulatory. Immunopharmacology and immunotoxocology, 2006, 28(1): 33-50.

[85] Hayes, W.J.. General principles: Dosage and other factors influencing toxicity. In: Toxicity of pesticides ( W.J.Hayes, ed.), Wavely press, USA, 1975.

[86] Lewinski, N., V. Colvin, R. Drezek. Cytotoxicity of nanoparticles. Small, 2008, 4(1): 26-49.

[87] Nat Vander, J.M., Sluis Vander, W.G., Desilva, K.T.D., Labadie, R.P. Ethnopharmacolo-gnostical survey of neem. A. Juss. (Meliaceae). J. Ethno pharmacology, 1991, 35: 1-24.

[88] Nety S., K.M. Koley, Neelu Gupta, V. Kumar, M. Chowdhary. Toxicological effect of hydroalcoholic extract of Azadirachta indica (Neem) in broiler birds. Indian J. Vet.Pathol., 2017, 41(2): 112-115. DOI: https://doi.org/10.5958/0973-970X.2017.0025.6

[89] Wang, C., M. Cao, D-X Shi, Z-Qyin, R- Jia et al. A 90 day Sub chronic Toxicity Study of Neem oil, Azadirachta indica Oil in Mice. Hum. Exp. Toxicol, 2013, 32(9): 904-913. DOI: https://doi.org/10.1177/0960327113475677

[90] Rohit Ramesh, Dabhi MR, Vinod, B. Mor. Nano pesticides as emerging agri-chemical formulations for income maximization. International Journal of Chemical Studies, 2018, 6(5): 2607-2610.

[91] Okpanyi, S.N., Ezeukwv, G.C. Anti-inflammatory, anti-pyretic activities of Neem. Planta Medica, 1981, 41: 34-39.

[92] Gandhi, M., Lal; R., Sankaranarayanan, A., Banerjee, C.K., Sharma, P.L. Acute toxicity Study of the oil from Neem Seed (oil). J.Ethnopharmacology, 1988, 23: 39-51.

[93] Singh, P.P., Junnarkar, A.Y., Reddi, G.S., Singh, K.V. Neem: neuropsycho pharmacological and anti-microbial studies. Fitoterapia, 1987, 58: 235-238.

Downloads

How to Cite

Dimetry, N. Z. (2020). Toxic Effect of Different Neem Formulations against Pests and Mammals. Journal of Botanical Research, 2(3), 6–19. https://doi.org/10.30564/jrb.v2i3.2032

Issue

Article Type

Review