Identification, Structure Analyses and Expression Pattern of the ERF Transcription Factor Family in Coffea arabica

Silvia Graciele Hülse de Souza (Laboratory of Molecular Biology, Universidade Paranaense PO box 87502-210, Umuarama, PR, Brazil)
Tiago B. dos Santos (Instituto Agronômico do Paraná, Laboratório de Biotecnologia Vegetal, CP 481, PO box 86001-970, Londrina, PR, Brazil)
Douglas S. Domingues (Department of Botany, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil)
Anne Bernadac (Laboratoire de Genomique et Biotechnologie des Fruits, UMR 990 INRA/INP-ENSAT Chemin de Borderouge, PO box 107, 31326 Castanet Tolosan Cedex, France)
Mondher Bouzayen (Laboratoire de Genomique et Biotechnologie des Fruits, UMR 990 INRA/INP-ENSAT Chemin de Borderouge, PO box 107, 31326 Castanet Tolosan Cedex, France)
Luiz F. P. Pereira (Empresa Brasileira de Pesquisa Agropecuária, Embrapa Café, Parque Estação Biológica, Brasília, DF, PO box 70770-901, Brazil)
Giuliano Degrassi (International Centre for Genetic Engineering and Biotechnology (ICGEB), 1Industrial Biotechnology Group, Buenos Aires, República Argentina)
Valéria Carpentieri-Pípolo (Empresa Brasileira de Pesquisa Agropecuária, Embrapa Trigo, PO box 99001-970, Passo Fundo, RS, Brazil)


Members of the ERF Family of Transcription Factors play an important role in plant development and gene expression that regulates responses to biotic and abiotic stress. This work identified 36 ERF family genes in Coffea arabica within the AP2/ERF full domain, using the EST-based genomic resource of the Brazilian Coffee Genome Project. The ERF family genes were classified into nine of the ten existing groups through phylogenetic analysis of the deduced amino acid sequences and comparison with the sequences of the ERF family genes in Arabidopsis. In addition to the AP2 domain, other conserved domains were identified, typical of members of each group. The in silico analysis and expression profiling showed high levels of expression for libraries derived from tissues of fruits, leaves and flowers as well as for libraries subjected to water stress. These results suggest the participation of the ERF family genes of C. arabica in distinct biological functions, such as control of development, maturation, and responses to water stress. The results of this work imply in the selection of promising genes for further functional characterizations that will provide a better understanding of the complex regulatory networks related to plant development and responses to stress, opening up opportunities for coffee breeding programs.


AP2/ERF;Coffee;Ethylene;Transcription factor

Full Text:



[1]ICO. International Coffee Organization. Available<> Accessed 22 Jan 2021.

[2]Pay, E. The market for organic and fair-trade coffee. FAO Rome 2009. Available in http://accessed 31 October 2016.

[3]Hamon, P., Hamon, S., Razafinarivo, N.J., Guyot, R., Sonja Siljak-Yakovlev, S., Couturon, E., Crouzillat, D., Rigoreau, M., Akaffou, S., Rakotomalala, J.J., Kochko A. (2015), “Coffea Genome Organization and Evolution”, Coffee in Health and Disease Prevention, edited by Victor R. Preedy, Academic Press, San Diego, 29-37.

[4]Wang, W., Vinocur, B., Altman, A. (2003), “Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering For Stress Tolerance”, Planta, 218(1), 1-14.

[5]Yu, Y., Yang, D., Zhou, S., Gu, J., Wang, F., Dong, J., Huang, R. (2017), “The Ethylene Response Factor Oserf109 Negatively Affects Ethylene Biosynthesis and Drought Tolerance in Rice”, Protoplasma, 254(1), 401-408.

[6]Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. (2006), “Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks”, Curr. Opin. Plant. Biol., 9(4), 436-42.

[7]Lakhwani, D., Pandey, A., Dhar, Y.V., Bag, S.K., Trivedi, P.K., Asif, M.H. (2016), “Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution”, Sci. Rep., 6, 18878.

[8]Sharma, M. K., Kumar, R., Solanke, A. U., Sharma, R., Tyagi, A. K., Sharma A. K. (2010), “Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato”, Mol. Genet. Genomics, 284(6), 455-75.

[9]Yamasaki, K., Kigawa, T., Seki, M., Shinozaki, K., Yokoyama, S. (2013), “DNA-Binding Domains Of Plant-Specific Transcription Factors: Structure, Function, And Evolution”, Trends Plant Sci., 18(5), 267-76.

[10]Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., Yu, G. (2010), “Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes”, Sci., 290(5499),2105-10.

[11]Jofuku, K. D., Den Boer, B. G., Van Montagu, M., Okamuro, J. K. (1994), “Control of Arabidopsis flower and seed development by the homeotic gene APETALA2”, Plant Cell, 6(9), 1211-25.

[12]Kagaya, Y., Ohmiya, K., Hattori, T. (1999), “RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants”, Nucleic Acids Res., 27(2), 470-478.

[13]Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H. (2006), “Genome wide analysis of the ERF gene family in Arabidopsis and rice”, Plant Physiol., 140(2), 411-432.

[14]Sakuma Y., Liu Q., Dubouzet J. G., Abe H., Shinozaki, K. (2002), “DNA binding specificity of the ERF/ AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold inducible gene expression”, Biochem. Biophys. Res. Commun., 290(3), 998-1009.

[15]Licausi, F., Giorgi, F. M., Zenon, S., Osti, F., Pezzotti, M., Perata, P. (2010), “Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera”, BMC Genomics, 11, 719.

[16]Thomashow, M. F. (1999), “Plant Cold Acclimation: freezing tolerance genes and regulatory mechanism”, Annu. Rev. Plant Physiol., 50, 571-599.

[17]Shinozaki, K. and Yamaguchi-Shinozaki K. (2007), “Gene networks involved in drought stress response and tolerance”, J. Exp. Bot., 58(2), 221-227.

[18]Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi, S. K. (2003), “OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression” Plant J., 33(4), 751-63.

[19]Yamaguchi, S. K. and Shinozaki, K. (2006), “Transcriptional Regulatory Networks in Cellular Responses And Tolerance To Dehydration And Cold Stresses”, Annu. Rev. Plant Biol., 57, 781-803.

[20]Mawlong, I., Ali, K., Kurup, D.,Yadav, S., Aruna, T. (2014), “Isolation and characterization of an AP2/ ERF-type drought stress inducible transcription factor encoding gene from rice”, J. Plant Biochem. Biotechnol., 23, 42-51.

[21]Gao, Y., Han, D., Jia, W., Ma, X., Yang, Y., Xu, Z. (2020), “Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress” Plant Physiol. Biochem., 156, 420-435.

[22]Faraji, S., Filiz, E., Kazemitabar, S.K., Vannozzi,A., Palumbo, F., Barcaccia, G., Heidari, P. (2020), “The AP2/ERF Gene Family in Triticum durum: Genome-Wide Identification and Expression Analysis under Drought and Salinity Stresses”, Genes, 11(12), 1464.

[23]Yang, T.W., Zhang, L.J., Zhang, T.G., Zhang, H., Xu, S.J., An, L.Z. (2005), “Transcriptional Regulation Network of Cold-Responsive Genes in Higher Plants”, Plant Sci., 169(6), 987-995.

[24]Qin, Q.L., Liu, J.G., Zhang, Z., Peng, R.H., Xiong, A.S., Yao, Q.H., Chen, J.M. (2007), “Isolation, optimization, and functional analysis of the cDNA encoding transcription factor RdreB1 in Oryza Sativa L”, Mol. Breeding, 19, 329-340.

[25]Du, C., Hu, K., Xian, S., Liu, C., Fan, J., Tu, J. (2016), “Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.)” Mol. Genet. Genomics, 291(3), 1053-1067.

[26]Gutterson, N. and Reuber, T. L. (2004), “Regulation of disease resistance pathways by AP2/ERF transcription factors”, Curr. Opin. Plant Biol., 7(4), 465- 471.

[27]Charfeddine, M., Bouaziz, D., Charfeddine, S., Hammami, A., Nouri-Ellouz, O., Bouzid G.R. (2015), “Overexpression of dehydration responsive element binding 1 protein (DREB1) in transgenic Solanum tuberosum enhances tolerance to biotic stress”, Plant Biotechnol Rep., 9, 79-88.

[28]Banno, H., Ikeda, Y., Niu, Q. W., Chua, N. H. (2001), “Overexpression of arabidopsis ESR1 induces initiation of shoot regeneration”, Plant Cell., 13(12), 2609- 2618.

[29]Pirrello, J., Jaimes-Miranda, F., Sanchez-Ballesta, M. T., Tournier, B., Khalil-Ahmad, Q., Regad, F., Latche, A., Pech, J. C., Bouzayen, M. (2006), “SlERF2, a tomato ethylene response factor involved in ethylene response and seed germination”, Plant Cell Physiol., 9(47):1195-1205.

[30]Yoong, F.Y., O’brien, L.K., Truco, M.J., Huo, H., Sideman, R., Hayes, R., Michelmore, R.W., Bradford, K.J. (2016), “Genetic Variation for Thermotolerance in Lettuce Seed Germination is Associated with Temperature-Sensitive Regulation of Ethylene Response Factor1 (ERF1)”, Plant Physiol., 170(1), 472-488.

[31]El-Sharkawy, I., Sherif, S., Mila, I., Bouzayen, M., Jayasankar, S. (2009), “Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening”, J. Exp. Bot., 60(3), 907-922.

[32]Zhang, A.D., Hu, X., Kuanga, S., Ge, H., Yin, X.R., Chen, K.S. (2016), “Isolation, Classification and Transcription Profiles of the Ethylene Response Factors (ERFs) in Ripening Kiwifruit”, Sci. Hort., 199, 209-215.

[33]Liu Q., Kasuga, M., Sakuma, Y., Abe H., Miura, S., Yamaguchi-Shinozaki, K.,Shinozaki, K. (1998), “Two transcription factors, DREB1 and DREB2, withan EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in droughtand low-temperature-responsive gene expression, respectively, in Arabidopsis”, Plant Cell., 10(8), 1391- 1406.

[34]Sharoni, A. M., Nuruzzaman, M., Satoh, K., Shimizu, T., Kondoh, H, Sasaya, T., Choi, Ir., Omura, T., Kikuchi, S. (2011), “Gene Structures, Classification and Expression Models of the AP2/EREBP Transcription Factor Family in Rice”, Plant Cell Physiol., 52(2), 344-360.

[35]Jin, L. G. and Liu, J. Y. (2008), “Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton”, Plant Physiol. Biochem., 46(1), 46-53.

[36]Champion, A., Hebrard, E., Parra, B., Bournaud, C., Marmey, P., Tranchant, C., Nicole, M. (2009), “Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas”, Mol. Plant Pathol., 10(4), 471-485.

[37]Zhang, G., Chen, M., Chen, X., Xu, Z., Guan, S, Li Lc, Li A, Guo J, Mao L, Ma Y. (2008), “Phylogeny, Gene Structures, And Expression Patterns of the ERF Gene Family in Soybean (Glycine Max L)”, J. Exp. Bot., 59(15), 4095-4107.

[38]Wang, S.,Yao, W.,Zhou, B., Jiang, T. (2016), “Structure Analysis And Expression Pattern of the ERF Transcription Factor Family in Poplar”, Acta Physiol. Plant, 38(10), 239.

[39]Zhuang, J., Peng, R-H., Cheng, Z-M., Zhang, J., Cai, B., Zhang, Z., Gao, F., Zhu, B., Fu, X-Y., Jin, X-F., Chen, J-M, Qiao, Y-S., Xiong, A-S., Yao, Q-H. (2009), “Genome-Wide Analysis of the Putative AP2/ ERF Family Genes in Vitis Vinifera”, Sci Hortic., 1(123), 73-81.

[40]Zhuang, J., Deng, De-X., Yao., Q-H., Zhang, J., Xiong, F., Chen, J-M., Xiong, Ai- S. (2010), “Discovery, Phylogeny and Expression Patterns of AP2- Like Genes in Maize”, Plant Growth Regul., 1(62), 51-58.

[41]Zhuang, J., Yao, Q-H., Xiong, A. S., Zhang, J. (2011), “Isolation, Phylogeny and Expression Patterns of AP2-Like Genes in Apple (Malus × Domestica Borkh)”, Plant Mol. Biol. Rep., 1(29), 209-216.

[42]Ito, T.M., Polido, P.B., Rampim, M.C., Kaschuk, G., Souza, S.G.H. (2014), “Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis)”, Genet. Mol. Res., 13(3), 7839-7851.

[43]Lima, A.A., Ságio, S.A., Chalfun-Júnior, A., Paiva, L.V. (2011), “In silico characterization of putative members of the coffee (Coffea arabica) ethylene signaling pathway”, Genet. Mol. Res., 10(2), 1277- 1289.

[44]Bustamante-Porras, J., Noirot, M., Campa, C., Hamon, S., Kochko. A. (2005), “Isolation and characterization of a Coffea canephora ERF-like cDNA”, Afr. J. Biotechnol., 2(4), 157-159.

[45]Vieira, L. G. E., Andrade, A. C., Colombo, C. A., Moraes, A. H. A., Metha, A., Oliveira A. C., Labate, C. A., Marino, C. L., Monteiro-Vitorello, C. B, Monte, D. C. et al. (2006), “Brazilian Coffee Genome Project: An Est-Based Genomic Resource”, Brazil. J. Plant Physiol., 18(1), 95-108.

[46]Mondego, J. M. C., Vidal, R. O., Carazzolle, M. F., Tokuda, E. K., Parizzi, L. P., Costa, G. G. L., Pereira, L. F. P., Andrade, A. C., Colombo, C. A.., Vieira, L. G. E., Pereira, G. A. G. (2011), “Brazilian Coffee Genome Project Consortium. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora”, BMC Plant Biol., 11, 30.

[47]Altschul, S. F., Madden, T. L., Scha¨Ffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997), “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res., 25(17), 3389-3402.

[48]Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., Mcwilliam, H., Remmert, M., Söding, J., Thompson, J.D., Higgins, D.G. (2011), “Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega”, Mol. Syst. Biol., 7, 539.

[49]Kumar, S., Stecher, G., Tamura, K. (2016), “MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets”, Mol. Biol. Evol., 33(7),1870-1874.

[50]Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., Suzuki, M. (1998), “A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA”, EMBO J., 17(18), 5484-5496.

[51]Kranz, H. D., Denekamp, M., Greco, R., Jin, H., Leyva, A., Meissner, R. C, Petroni, K., Urzainqui, A., Bevan, M., Martin, C. et al. (1998), “Towards functional characterisation of the members of the R2R3- MYB gene family from Arabidopsis thaliana”, Plant J., 16(2), 263-276.

[52]Reyes, J.C., Muro-Pastor M.I., Florencio, F.J. (2004),” The GATA family of transcription factors in Arabidopsis and rice”, Plant Physiol., 134(4), 1718- 32.

[53]Tournier, B., Sanchez-Ballesta, M. T., Jones, B., Pesquet, E., Regad, F., Latche, A., Pech, J. C., Bouzayen, M. (2003), “New Members of the Tomato ERF Family Show Specific Expression Pattern and Diverse DNA-Binding Capacity to the GCC Box Element”, Febs Lett., 550(1-3), 149-54.

[54]Fujimoto S. Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M. (2000), “Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression”, Plant Cell., 12(3), 393–404.

[55]Grotewolda, E. (2008), “Transcription factors for predictive plant metabolic engineering: are we there yet?”, Curr Opin Biotechnol., 19(2),138-44.

[56]Zhang, Q., Zhou, W., Li, B., Li, L., Fu, M., Zhou, L., Yu, X., Wang, D., Wang, Z. (2021), “Genome-Wide Analysis and the Expression Pattern of the ERF Gene Family in Hypericum perforatum”, Plants, 10(1), 133.

[57]Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., Ohme-Takagi, M. (2001), “Repression domains of class II ERF transcriptional repressors share an essential motif for active repression”, Plant Cell., 13(8), 1959-1968.

[58]Cao, Y., Song, F., Goodman, R. M., Zheng, Z. (2006), “Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress”, J. Plant Physiol., 11(163), 1167-1178.

[59]Liu, Y., Zhao, T. J., Liu, J. M., Liu, W. Q., Liu, Q., Yan, Y. B., Zhou, H. M. (2006), “The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box”, FEBS Lett., 580(5), 1303-1308.

[60]De Bodt, S., Raes, J., Florquin, K., Rombauts, S., Rouze, P., Theissen, G., Van De Peer, Y. (2003), “Genome-wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants” J. Mol. Evol., 56(5):573-86.

[61]Arora, R., Agarwal, P., Ray, S., Singh, A. K., Singh, V. P., Tyagi, A. K., Kapoor, S. (2007), “MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress”, BMC Genomics., 8, 242.

[62]Tiwari, S. B., Hagen, G., Guilfoyle, T. J. (2004), “AUX/IAA Proteins Contain a Potent Transcriptional Repression Domain”, Plant Cell, 16(2), 533-543.

[63]Hiratsu, K., Mitsuda, N., Matsui, K., Ohme-Takagi, M. (2004), “Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis”, Biochem. Biophys. Res. Commun., 321(1), 172-178.

[64]Kazan, K. (2006), “Negative regulation of defense and stress genes by EAR-motif-containing repressors”, Trends Plant Sci., 11(3), 109-112.

[65]Tsutsui, T., Kato, W., Asada, Y., Sako, K., Sato, T., Sonoda, Y., Kidokoro, S., Yamaguchi-Shinozaki, K., Tamaoki, M., Arakawa, K., Ichikawa, T., Nakazawa, M., Seki, M., Shinozaki, K., Matsui, M., Ikeda, A., Yamaguchi, J. (2009), “DEAR1, a Transcriptional Repressor of Dreb Protein that Mediates Plant Defense and Freezing Stress Responses in Arabidopsis”, J. Plant. Res., 122(6), 633-43.

[66]EL Kayal, W., Navarro, M., Marque, G., Keller, G., Marque, C. Teulieres, C. (2006), “Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold”, J. Exp. Bot., 57(10), 2455-2469.

[67]Canella, D., Gilmour, S. J., Kuhn, L. A., Thomashow, M. F. (2010), “DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence”, Biochim. Biophys. Acta., 1799(5-6), 454-462.

[68]Van Raemdonck, D., Pesquet, E., Cloquet, S., Beeckman, H., Boerjan, W., Goffner, D., El, Jaziri, M., Baucher, M. (2005), “Molecular Changes Associated with the Setting up of Secondary Growth in Aspen”, J. Exp. Bot., 56(418), 2211-2227.

[69]Yin, X-R., Allan, A. C., Chen, K-S., Ferguson, I. B. (2010), “Kiwifruit EIL and ERF Genes Involved in Regulating Fruit Ripening”, Plant Physiol., 3(153), 1280-1292.

[70]Pereira, L. F. P., Galvao, R. M., Kobayashi, A. K., Cação, S. M. B., Esteves, V. L. G. (2005), “Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica L”, Braz. J. Plant Physiol., 17(3), 283-289.

[71]Petitot, A. S., Lecouls, A. C., Fernandez, D. (2008), “Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica”, Tree Genet. Genomes., 3(4), 379- 390.

[72]Chen, Z. J. and Ni, Z. (2006), “Mechanisms of genomic rearrangements and gene expression changes in plant polyploids”, BioEssays, 28(3), 240-252.

[73]Vidal, R. O., Mondego, J. M., Pot, D., Ambrosio, A. B., Andrade, A. C., Pereira, L. F., Colombo, C. A., Vieira, L. G., Carazzolle, M. F., Pereira, G. A. (2010), “A High-Throughput Data Mining of SNPS in Coffea Spp ESTs Suggests Differential Homeologous Gene Expression in the Allotetraploid Coffea arabica” Plant Physiol., 154(3), 1053-1066.

[74]Guo, Z. J., Chen, X. J., Wu, X. L., Ling, J. Q., Xu, P. (2004), “Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco”, Plant Mol. Biol., 55, 607-618.

[75]Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J., Ma, Y. (2009), “Overexpression of the Soybean GMERF3 Gene, an AP2/ERF Type Transcription Factor for Increased Tolerances to Salt, Drought, and Diseases in Transgenic Tobacco”, J. Exp. Bot., 13 (60), 3781-3796.

[76]Erpen, L., Devi, H.S., Grosser, J.W. et al. (2018), “Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants”, Plant Cell Tiss. Organ Cult., 132, 1-25.

[77]Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2006), “Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression”, Plant Cell., 18(5), 1292- 309.

[78]Bouaziz, D., Jbir, R., Charfeddine, S., Saidi, M.N., Gargouri-Bouzid, R. (2015), “The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress”, Plant Cell Tiss. Organ Cult., 121(1):237-248.

[79]Liu, Y., Chen, H., Zhuang, D., Jiang, D., Liu, J., Wu, G., Yang, M., Shen, S. (2010), “Characterization of a DRE-binding transcription factor from asparagus (Asparagus officinalis L.) and its overexpression in Arabidopsis resulting in salt- and drought-resistant transgenic plants”, J. Plant Sci., 171(1), 12-23.

[80]El-Sharkawy, I., Kim, W. S., El-Kereamy, A., Jayasankar, S., Svircev Amd., Brown, C. W. (2007), “Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.)”, J. Exp. Bot., 58(13), 3631-3643.

[81]Brown, R. L., Kazan, K., Mcgrath, K. C., Maclean, D. J., Manners, J. M. (2003), “A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis”, Plant Physiol., 132(2),1020-1032.

[82]Anderson, J. P., Lichtenzveig, J., Gleason, C., Oliver, R. P., Singh, K. B. (2010), “The B-3 Ethylene Response Factor MtERF1-1 Mediates Resistance to a Subset of Root Pathogens in Medicago truncatula without Adversely Affecting Symbiosis with Rhizobia”, Plant Physiol., 154(2), 861-73.

[83]Soltis, D. E., Bell, C. D., Kim, S., Soltis, P. S. (2008), “Origin and early evolution of angiosperms”, Ann. N. Y. Acad. Sci. 1133, 3-25.

[84]Semon M. and Wolfe, K. H. (2007), “Consequences of genome duplication”, Curr. Opin. Gen. Dev., 17(6), 505-512.

[85]Wang, A., Tan D. M., Takahashi, A., Li, T. Z., Harada, T. (2007), “MdERFs, two Ethylene-Response Factors Involved in Apple Fruit Ripening”, J. Exp. Bot., 58(13), 3743-3748.



  • There are currently no refbacks.
Copyright © 2021 Tiago Benedito dos Santos, Silvia Graciele Hulse de Souza, Luiz Filipe Protássio Pereira, Anne Bernadac, Mondher Bouzayen, Douglas S. Domingues, Giuliano Degrassi, VALERIA CARPENTIERI-PIPOLO Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.