Evaluation of Tung Oil (Vernicia fordii (Hemsl.)) for Controlling Termites

Hangtian Li (Institute of Termite Control of Yuhang, Hangzhou, 311100, China)
Siying Li (Institute of Termite Control of Yuhang, Hangzhou, 311100, China)
Hui Lu (College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China)
Jingjing Zhang (Institute of Termite Control of Yuhang, Hangzhou, 311100, China)
Xi Yang (College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China)
Dayu Zhang (College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China)
Yike Zhang (College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China)
Yongjian Xie (College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China)

Article ID: 4793


In worldwide, the use of chemical pesticides to protect wood has been greatly restricted. In recent years, a large number of researchers devoted to the search for natural, safe and non-polluting bioactive chemical compounds from plants as an alternative to synthetic organic chemical preservative. In Chinese folk, tung oil can be used as paint for wooden furniture to protect them from pests. This study aimed to evaluate the chemical compositions of raw and heated tung oil and their activity against termite. In choice bioassays, weight loss of wood treated with 5% raw or heated tung oil after 4 weeks was significantly less than that of the control group. In no-choice bioassays, there was a significant difference in termite survival and wood weight loss on raw and heated tung oil-treated wood. When tung oil-treatment concentrations increased to 5%, wood weight loss was less than 10%. There was no significant difference in termite survival and wood weight loss between raw and heated tung oil-treated wood. Survival of termites in both tung oil wood treatments was significantly lower than that in the starvation control after 4 weeks. Raw and heated tung oil significantly improved the resistance of pine wood to termites, and have the potential for the development of natural wood preservatives.


Termite-resistance; Raw and heated tung oil; Vernicia fordii; Coptotermes formosanus

Full Text:



[1] Cornelius, M.L., Osbrink, W.L.A., 2015. Natural resistance of exotic wood species to the Formosan subterranean termite (Isoptera: Rhinotermitidae). International Biodeterioration & Biodegradation. 101, 8-11. DOI: http://dx.doi.org/10.1016/j.ibiod.2015.03.016

[2] Rust, M.K., Su, N.Y., 2012. Managing social insects of urban importance. Annual Review of Entomology. 57, 355-375. DOI: https://doi.org/10.1146/annurev-ento-120710- 100634

[3] Chen, P.S., Chen, Y.H., Yeh, T.F., et al., 2014. Mechanism of decay resistance of heartwood extracts from Acacia confusa against the brown-rot fungus Laetiporus sulphureus. Wood Science and Technology. 48, 451-465. DOI: https://doi.org/10.1007/s00226-014-0615-6

[4] Santana, A.L.B.D., Maranhão, C.A., Santos, J.C., et al., 2010. Antitermitic activity of extractives from three Brazilian hardwoods against Nasutitermes corniger. International Biodeterioration & Biodegradation. 64, 7-12. DOI: https://doi.org/10.1016/j.ibiod.2009.07.009

[5] Roszaini, K., Nor Azah, M.A., Mailina, J., et al., 2013. Toxicity and antitermite activity of the essential oils from Cinnamomum camphora, Cymbopogon nardus, Melaleuca cajuputi and Dipterocarpus sp. against Coptotermes curvignathus. Wood Science and Technology. 47, 1273-1284. DOI: https://doi.org/10.1007/s00226-013-0576-1

[6] Reyes-Chilpa, R., Viveros-Rodríguez, N., Gomez-Garibay, F., et al., 1995. Antitermitic activity of Lonchocarpus castilloi flavonoids and heartwood extracts. Journal of Chemical Ecology. 21, 455-463. DOI: https://doi.org/10.1007/BF02036742

[7] Ohmura, W., Doi, S., Aoyama, M., 2000. Antifeedant activity of flavonoids and related compounds against the subterranean termite Coptotermes formosanus Shiraki. Journal of Wood Science. 46, 149-153. DOI: http://doi.org/10.1007/BF00777362

[8] Kawaguchi, H., Kim, M., Ishida, M., et al., 1989. Several antifeedants from Phellodendron amurense against Reticulitermes speratus. Agricultural and Biological Chemistry. 53, 2635-2640. DOI: https://doi.org/10.1080/00021369.1989.10869702

[9] Mao, L., Henderson, G., 2007. Antifeedant activity and acute and residual toxicity of alkaloids from Sophora flavescens (Leguminosae) against Formosan subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology. 100, 866-870. DOI: https://doi.org/10.1039/b406975g

[10] Ganapaty, S., Thomas, P.S., Fotso, S., et al., 2004. Antitermitic quinones from Diospyros sylvatica. Phytochemistry. 65, 1265-1271. DOI: http://doi.org/10.1016/j.phytochem.2004.03.011

[11] Lukmandaru, G., Takahashi, K., 2008. Variation in the natural termite resistance of teak (Tectona grandis Linn fil.) wood as a function of tree age. Annals of Forest Science. 65, 708. DOI: https://doi.org/10.1112/S0024610700001022

[12] Lukmandaru, G., Takahashi, K., 2009. Radial distribution of quinones in plantation teak (Tectona grandis L.f.). Annals of Forest Science. 66, 605. DOI: https://doi.org/10.1051/forest/2009051

[13] Watanabe, Y., Mihara, R., Mitsunaga, T., et al., 2005. Termite repellent sesquiterpenoids from Callitris glaucophylla heartwood. Journal of Wood Science. 51, 514-519. DOI: https://doi.org/10.1007/s10086-004-0683-6

[14] Xie, Y.J., Wang, K., Huang, Q.Y., et al., 2014. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Industrial Crops and Products. 53, 163-166. DOI: https://doi.org/10.1016/j.indcrop.2013.12.021

[15] Xie, Y.J., Yang, Z.L., Cao, D.Y., et al., 2015. Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (Clove). Industrial Crops and Products. 77, 780-786. DOI: https://doi.org/10.1016/j.indcrop.2015.09.044

[16] Bultman, J.D., Gilbertson, R.K., Adaskaveg, J., 1991. The efficacy of guayule resin as a pesticide. Bioresource Technology. 35, 1997-2001. DOI: https://doi.org/10.1016/0960-8524(91)90030-N

[17] Bultman, J.D., Chen, S.L., Schloman, W.W.Jr., 1998. Antitermitic efficacy of the resin and rubber in fractionator overheads from a guayule extraction process. Industrial Crops and Products. 8, 133-143. DOI: https://doi.org/10.1016/S0926-6690(97)10018-8

[18] Nakayama, F.S., Vinyard, S.H., Chow, P., et al., 2001. Guayule as a wood preservative. Industrial Crops and Products. 14, 105-111. DOI: https://doi.org/10.1016/S0926-6690(00)00093-5

[19] Hu, J.B., Chang, S.S., Peng, K.Y., et al., 2015. Bio-susceptibility of shells of Camellia oleifera Abel fruits to fungi and termites. International Biodeterioration & Biodegradation. 104, 219-223. DOI: https://doi.org/10.1016/j.ibiod.2015.06.011

[20] Cui, P., Lin, Q., Fang, D., et al., 2018. Tung tree (Vernicia fordii, Hemsl) genome and transcriptome sequencing reveals co-ordinate up-regulation of fatty acid beta-oxidation and triacylglycerol biosynthesis pathways during eleostearic acid accumulation in seeds. Plant and Cell Physiology. 59, 1990-2003. DOI: http://doi.org/10.1093/pcp/pcy117

[21] Liu, M., Li, W., Zhao, G., et al., 2019. New insights of salicylic acid into stamen abortion of female flowers in tung tree (Vernicia fordii). Frontiers in Genetics. 10, 316. DOI: https://doi.org/10.3389/fgene.2019.00316

[22] Zhang, L.L., Luo, M.C., You, F.M., et al., 2015. Development of microsatellite markers in tung tree (Vernicia fordii) using cassava genomic sequences. Plant Molecular Biology Reporter. 33, 893-904. DOI: http://doi.org/10.1007/s11105-014-0804-3

[23] Zhang, L.L., Lu, S.Y., Sun, D.F., et al., 2015. Genetic variation and geographic differentiation revealed using ISSR markers in tung tree, Vernicia fordii. Journal of Genetics. 94, e5-9. DOI: http://doi.org/10.1007/s12041-015-0473-5

[24] Chen, J., Liu, W., Fan, Y., et al., 2019. Identification and analysis of tRNA genes provide new insights into oil biosynthesis in tung tree (Vernicia fordii Hemsl). Industrial Crops and Products. 137, 74-80. DOI: https://doi.org/10.1016/j.indcrop.2019.05.016

[25] Li, Z., Shi, K., Zhang, F., et al., 2019. Growth, physiological, and biochemical responses of tung tree (Vernicia fordii) seedlings to different light intensities. Hortscience. 54, 1361-1369. DOI: https://doi.org/10.21273/HORTSCI14035-19

[26] Chen, G., Zhao, W., Li, Y., et al., 2020. Bioactive chemical constituents from the seed testa of Vernicia fordii as potential neuroinflammatory inhibitors. Phytochemistry. 171, 112233. DOI: https://doi.org/10.1016/j.phytochem.2019.112233

[27] Santos, D.R., Oliveira, L.M., Lucchese, A.M., et al.,2020. Insecticidal activity of essential oils of species from the genus Lippia against Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae). Sociobiology. 67, 292-300. DOI: https://doi.org/10.13102/sociobiology.v67i2.4992

[28] Mishra, T., Gangoo, S.A., Azad, A., et al., 2020. Chemical composition and antitermite activity of essential oil from Artemisia absinthium growing in Kashmir Valley of India. Journal of Essential Oil Bearing Plants. 23, 397-404. DOI: https://doi.org/10.1080/0972060X.2020.1731335

[29] Santos, A.A., de Oliveira, B.M.S., Melo, C.R., et al., 2017. Sub-lethal effects of essential oil of Lippia sidoides on drywood termite Cryptotermes brevis (Blattodea: Termitoidea). Ecotoxicology and Environmental Safety. 145, 436-441. DOI: https://doi.org/10.1016/j.ecoenv.2017.07.057

[30] Hsu, C.Y., Lin, C.Y., Chang, S.T., 2016. Antitermitic activities of wood essential oil and its constituents from Chamaecyparis formosensis. Wood Science and Technology. 50, 663-676. DOI: https://doi.org/10.1007/s00226-016-0811-7

[31] Park, I.K., 2014. Fumigant toxicity of Oriental Sweetgum (Liquidambar orientalis) and Valerian (Valeriana wallichii) Essential oils and their components, including their Acetylcholinesterase inhibitory activity, against Japanese Termites (Reticulitermes speratus). Molecules. 19, 12547-12558. DOI: https://doi.org/10.3390/molecules190812547

[32] Hutchins, R.A., 2001. Tung tree extracts useful for controlling termites. U.S. Patent No. 6, 264, 956.

[33] Nakayama, F.S., Osbrink, W.L., 2010. Evaluation of kukui oil (Aleurites moluccana) for controlling termites. Industrial Crops and Products. 31, 312-315. DOI: http://doi.org/10.1016/j.indcrop.2009.11.009

[34] Scheffrahn, R.H., Su, N.Y., 1994. Keys to soldiers and winged adult termites (Isoptera) of Florida. Florida Entomologist. 77, 460-474. DOI: http://doi.org/doi:10.2307/3495700

[35] American Society for Testing and Materials (ASTM), 1998. Standard test method for laboratory evaluation of wood and other cellulosic materials for resistance to termites, Standard D 3345-74. Annual Book of ASTM Standards 4.10. ASTM, West Conshohocken, PA. pp. 430-432.

[36] Tascioglu, C., Tsunoda, K., 2010. Laboratory evaluation of wood-based composites treated with alkaline copper quat against fungal and termite attacks evaluated. International Biodeterioration & Biodegradation. 64, 683-687. DOI: https://doi.org/10.1016/j.ibiod.2010.05.010

[37] Bayatkashkoli, A., Kameshki, B., Ravan, S., et al., 2017. Comparing of performance of treated particleboard with alkaline copper quat, boron-fluorine-chromium-arsenic and chlorotalonil against Microcerotermes diversus and Anacanthotermes vagans termite. International Biodeterioration & Biodegradation. 120, 186-191. DOI: http://dx.doi.org/10.1016/j.ibiod.2017.03.003

[38] Lin, L.D., Chen, Y.F., Wang, S.Y., et al., 2009. Leachability, metal corrosion and termite resistance of wood treated with copper-based preservative. International Biodeterioration & Biodegradation. 63, 533-538. DOI: https://doi.org/10.1016/j.ibiod.2008.07.012

[39] Mugabi, P., Otuko, E., 2019. Effectiveness of copper chrome arsenate and used engine oil in protecting fencing post of ugandan grown eucalypt clone GC550 and Phoenix reclinata against termite attack. Maderas-Ciencia y Tecnologia. 21, 97-104. DOI: http://dx.doi.org/10.4067/S0718-221X2019005 000109

[40] Bayatkashkoli, A., Taghiyari, H.R., Kameshki, B., et al., 2016. Effects of zinc and copper salicylate on biological resistance of particleboard against Anacanthotermes vagans termite. International Biodeterioration & Biodegradation. 115, 26-30. DOI: https://doi.org/10.1016/j.ibiod.2016.07.013

[41] Terzi, E., Tasçioglu, C., Kartal, S.N., et al., 2011. Termite resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants. International Biodeterioration & Biodegradation. 65, 565-568. DOI: https://doi.org/10.1016/j.ibiod.2010.10.014

[42] Gascón-Garrido, P., Thévenon, M.F., Mainusch, N., et al., 2017. Siloxane-treated and copper-plasma-coated wood: Resistance to the blue stain fungus Aureobasidium pullulans and the termite Reticulitermes flavipes. International Biodeterioration & Biodegradation. 120, 84-90. DOI: http://dx.doi.org/10.1016/j.ibiod.2017.01.033

[43] Pan, C., Wang, C., 2015. Sodium fluoride for protection of wood against field populations of Subterranean Termites. Journal of Economic Entomology. 108, 2121-2124. DOI: https://doi.org/10.1093/jee/tov175

[44] Pan, C., Ruan, G., Chen, H., et al., 2015. Toxicity of sodium fluoride to subterranean termites and leachability as a wood preservative. European Journal of Wood and Wood Products.73, 97-102.DOI: https://doi.org/10.1007/s00107-014-0849-x

[45] Tascioglu, C., Umemura, K., Kusuma, S.S., et al., 2017. Potential utilization of sodium fluoride (NaF) as a biocide in particleboard production. Journal of Wood Science. 63, 652-657. DOI: https://doi.org/10.1007/s10086-017-1654-z

[46] Xuan, L., Hui, D., Cheng, W., et al., 2017. Effect of Preservative Pretreatment on the Biological Durability of Corn Straw Fiber/HDPE Composites. Materials. 10, 789. DOI: http://dx.doi.org/10.3390/ma10070789

[47] Akhtari, M., Nicholas, D., 2013. Evaluation of particulate zinc and copper as wood preservatives for termite control. European Journal of Wood and Wood Products. 71, 395-396. DOI: http://dx.doi.org/10.1007/s00107-013-0690-7

[48] Mantanis, G., Terzi, E., Kartal, S.N., et al., 2014. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. International Biodeterioration & Biodegradation. 90, 140-144. DOI: http://dx.doi.org/10.1016/j.ibiod.2014.02.010

[49] Terzi, E., Kartal, S.N., Yılgor, N., et al., 2016. Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. International Biodeterioration & Biodegradation. 107, 77-87. DOI: http://dx.doi.org/10.1016/j.ibiod.2015.11.010

[50] Usmani, S.M., Plarre, R., Hübert, T., et al., 2020. Termite resistance of pine wood treated with nano metal fluorides. European Journal of Wood and Wood Products. 78, 493-499. DOI: https://doi.org/10.1007/s00107-020-01522-z

[51] Kartal, S.N., Terzi, E., Yoshimura, T., et al., 2012. Preliminary evaluation of storax and its constituents: Fungal decay, mold and termite resistance. International Biodeterioration & Biodegradation. 70, 47-54. DOI: https://doi.org/10.1016/j.ibiod.2012.02.002

[52] Shiny, K.S., Remadevi, O.K., 2014. Evaluation of termiticidal activity of coconut shell oil and its comparison to commercial wood preservatives. European Journal of Wood and Wood Products. 72, 139-141. DOI: https://doi.org/10.1007/s00107-013-0755-7

[53] Kadir, R., Masseat, K., 2018. Heartwood durability of Dyera costulata, Neolamarckia cadamba and Khaya ivorensis trees from fast-growth plantations against subterranean termite Coptotermes curvignathus. Holzforschung. 72, 143-149. DOI: https://doi.org/10.1515/hf-2017-0067

[54] Ahmed, S., Fatima, R., Hassan, B., 2020. Evaluation of different plant derived oils as wood preservative against subterranean termite Odontotermes obesus. Maderas-Ciencia y Tecnologia. 22, 109-120. DOI: https://doi.org/10.4067/S0718-221X2020005000110

[55] Eller, F.J., Kirker, G.T., Mankowski, M.E., et al., 2020. Effect of burgundy solid extracted from Eastern Red Cedar heartwood on subterranean termites and Wood-decay fungi. Industrial Crops and Products. 144, 112023. DOI: https://doi.org/10.1016/j.indcrop.2019.112023

[56] Zhan, Z., Chen, Y., Shockey, J., et al., 2016. Proteomic analysis of tung tree (Vernicia fordii) oil seeds during the developmental stages. Molecules. 21, 1486. DOI: http://doi.org/10.3390/molecules21111486

[57] Zhang, L., Wu, P., Lu, W., et al., 2018. Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii). BMC Plant Biology. 18, 248. DOI: https://doi.org/10.1186/s12870-018-1458-3

[58] Yuan, G.F., Chen, X.E., Li, D., 2014. Conjugated linolenic acids and their bioactivities: a review. Food & Function. 5, 1360-1368. DOI: http://doi.org/10.1039/c4fo00037d

[59] Tsuzuki, T., Tokuyama, Y., Igarashi, M., et al., 2004. Tumor growth suppression by α-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis. 25, 1417-1425. DOI: http://doi.org/10.1093/carcin/bgh109

[60] Dhar, P., Chattopadhyay, K., Bhattacharyya, D., et al., 2006. Antioxidative effect of conjugated linolenic acid in diabetic and non-diabetic blood: an in vitro study. Journal of Oleo Science. 56, 19-24. DOI: http://doi.org/10.5650/jos.56.19

[61] Chen, P.H., Chen, G.C., Yang, M.F., et al., 2012. Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. Journal of Nutrition. 142, 1197-1204. DOI: https://doi.org/10.3945/jn.112.159939

[62] Jacobson, M., Crystal, M.M., Warthen Jr, J.D., 1981. Boll weevil (Anthonomus gradis gradis) feeding deterrents from tung oil expressed from Aleurites fordii. Journal of Agricultural and Food Chemistry. 29, 591- 593. DOI: https://doi.org/10.1021/jf00105a039

[63] Yang, X., Han, H., Li, B., et al., 2021. Fumigant toxicity and physiological effects of spearmint (Mentha spicata, Lamiaceae) essential oil and its major constituents against Reticulitermes dabieshanensis. Industrial Crops and Products. 171, 113894. DOI: https://doi.org/10.1016/j.indcrop.2021.113894

[64] Taylor, A.M., Gartner, B.L., Morrell, J.J., 2006. Effects of Heartwood Extractive fractions of Thuja plicata and Chamaecyparis nootkatensison wood degradation by termites or Fungi. Journal of Wood Science. 52, 147-153. DOI: https://doi.org/10.1007/s10086-005-0743-6

[65] Syofund, A., Banana, A.Y., Nakabonge, G., 2012. Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas-Ciencia y Tecnologia. 14, 155-163. DOI: https://doi.org/10.4067/S0718-221X20120002 00003

[66] Brocco, V.F., Paes, J.B., Costa, L.G., et al., 2020. Wood color changes and termiticidal properties of teak heartwood extract used as a wood preservative. Holzforschung. 74, 233-245. DOI: https://doi.org/10.1515/hf-2019-0138

[67] Hassan, B., Mankowski, M.E., Kirker, G., et al., 2019. Ex-situ performance of extracts from naturally durable heartwood species and their potential as wood preservatives. European Journal of Wood and Wood Products. 77, 869-878. DOI: https://doi.org/10.1007/s00107-019-01443-6

DOI: https://doi.org/10.30564/jbr.v4i3.4793


  • There are currently no refbacks.
Copyright © 2022 Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.