Calculation of the Efficiency of Regenerative Air Heat Exchanger with Intermediate Heat Carrier

V. Yu. Borodulin (Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, 630090, Russia)
M. I. Nizovtsev (Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, 630090, Russia)

Article ID: 3235

DOI: https://doi.org/10.30564/jcr.v3i1.3235

Abstract


The study deals with a new regenerative air heat exchanger with an intermediate heat carrier used in the systems of room ventilation. A physical and mathematical model of the heat transfer process is proposed. The influence of design and operating parameters on the temperature efficiency of the heat exchanger is analyzed. The possibility of a significant increase in its efficiency with a decrease in the packing diameter is shown. As a result of calculations, it was found that with a decrease in the filling height, the maximum temperature efficiency shifted towards a decrease in the air flow rate from its value determined from the equality of water equivalents of liquid and air.


Keywords


Ventilation; Heat exchanger with intermediate heat carrier; Packed column; Computational model; Temperature efficiency

Full Text:

PDF

References


[1] Fernandez-Seara J., Diz R., Uhia F.J., Dopazo A., Ferro J.M. (2011). Experimental analysis of an airto-air heat recovery unit for balanced ventilation systems in residential buildings. Energy Conversion and Management, 52, p. 635-640. DOI: 10.1016/j.enconman.2010.07.040.

[2] Rezaie B., Esmailzadeh E., Dincer I. (2011). Renewable energy options for buildings: Case studies. Energy and Buildings, 43, p. 56-65. DOI: 10.1016/j.enbuild.2010.08.013.

[3] Mardiana A., Riffat S.B. (2013). Review on physical and performance parameters of heat recovery systems for building applications. Renewable and Sustainable Energy reviews, 28, p. 174-190.

[4] DOI: 10.1016/j.rser.2013.07.016.

[5] Dodoo A., Gustavsson L., Sathre R. (2011). Primary energy implications of ventilation heat recovery in residential buildings. Energy and Buildings, 43 p. 1566-1572.

[6] DOI: 10.1016/j.enbuild.2011.02.019.

[7] Mota F.A.S., Ravagnani M.A.S.S., Carvalho E.P. (2014). Optimal design of plate heat exchangers. Applied Thermal Engineering, 63, p. 33-39. DOI: 10.5772/60885.

[8] Amin M.R., Lindstrom J.D. (2012). Transient thermal simulation of counter flow compact recuperator partition plates. Applied Thermal Engineering, 48, р. 11-17.DOI: 10.1016/j.applthermaleng.2012.04.030.

[9] Joen C. T., Park Y., Wang Q., Sommers A., Han X., Jacobi A. A. (2009) А review on polymer heat exchangers for HVAC & R applications. Int. J. Refrig, 32 p. 763-79.DOI: 10.1016/j.ijrefrig.2008.11.008.

[10] Nasr M.R., Fauchoux M., Besant R. W., Simonson C.J. (2014). A review of frosting in air-to-air energy exchangers. Renewable and Sustainable Energy Reviews, 30, p. 538-554. DOI: 10.1016/j.rser.2013.10.038.

[11] Ruan W., Qu M., Horton W.T. (2012). Modeling analysis of an enthalpy recovery wheel with purge air. Int. J. Heat and Mass Transfer, 55, p. 4665-4672. DOI: 10.1016/j.ijheatmasstransfer.2012.04.025.

[12] Smith K. M., Svendsen S. (2015). Development of a plastic rotary heat exchanger for room-based ventilation in existing apartments. Energy and Buildings, 107, p. 1-10. DOI: 10.1016/j.enbuild.2015.12.025.

[13] Manz H., Huber H., Schalin A., Weber A., Ferrazzini M., Studer M. (2000). Performance of single room ventilation units with recuperative or regenerative heat recovery. Energy and Buildings, 31(1), p. 37-47. DOI: 10.1016/S0378-7788(98)00077-2.

[14] Nizovtsev M.I., Borodulin V. Yu, Letushko V.N. (2017). Influence of condensation on the efficiency of regenerative heat exchanger for ventilation. Applied Thermal Engineering, 111, p. 997-1007. DOI: 10.1016/j.applthermaleng.2016.10.016.

[15] Kragh J., Rose J., Nielsen T.R., Svendsen S. (2007). New counter flow heat exchanger designed for ventilation systems in cold climates. Energy and Buildings, 39(11), p. 1151-1158.

[16] DOI: 10.1016/j.enbuild.2006.12.008.

[17] Cerrah Ecem, McCague Claire, Bahrami Majid. (2020). Sorbent based enthalpy recovery ventilator. Energy and Buildings, 211, 109755. DOI: 10.1016/j.enbuild.2020.109755.

[18] Ephraim M. Sparrow, Jimmy Tong C.K., Mark R. Johnson and Gerry P. Martin. (2007). Heat and Mass transfer characteristics of rotating regenerative total energy wheel. International Journal of Heat and Mass Transfer, 50, p. 1631-1636. DOI: 10.1016/j.ijheatmasstransfer.2006.07.035.

[19] Nizovtsev M.I., Terekhov V.I., Yavorskiy A.I. Disc heat exchanger // Invention patent No. 2255282 of June 27, 2005.

[20] Nizovtsev M.I. (2007). Experimental study of the dynamic and thermal characteristics of a disc fan-regenerator of heat of ventilated air. News of higher educational institutions. Construction, 10, p. 46-50.

[21] Yavorskiy A.I. Ventilation heat recovery method// Application for invention No. 2010121465/06 of 26.05.2010.

[22] Nizovtsev M.I., Yavorskiy A.I., Letushko V.N., Borodulin V.Yu. (2013). Experimental study of an air-toair heat exchanger with an intermediate heat carrier for heat recovery from ventilation air. Energy and Resource Efficiency of Low-Rise Residential Buildings: Proc. Scientific - Practical. Conf., - Novosibirsk: IT SB RAS, p. 43-49.


Refbacks

  • There are currently no refbacks.
Copyright © 2021 Mikhail Ivanovich Nizovtsev, V. Yu. Borodulin


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.