
1

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v2i2.1620

Journal of Computer Science Research

http://ojs.bilpublishing.com/index.php/jcsr

ARTICLE

Energy-Efficient Transaction Serialization for IoT Devices

Daniel Evans*
Pace University, United States

ARTICLE INFO ABSTRACT

Article history
Received: 6 January 2020
Accepted: 20 January 2020
Published Online: 31 May 2020

This article presents two designs, the Transaction Serial Format (TSF)
and the Transaction Array Model (TAM). Together, they provide full, ef-
ficient, transaction serialization facilities for devices with limited onboard
energy, such as those in an Internet of Things (IoT) network. TSF pro-
vides a compact, non-parsed, format that requires minimal processing for
transaction deserialization. TAM provides an internal data structure that
needs minimal dynamic storage and directly uses the elements of TSF.
The simple lexical units of TSF do not require parsing. The lexical units
contain enough information to allocate the internal TAM data structure
efficiently. TSF generality is equivalent to XML and JSON. TSF rep-
resents any XML document or JSON object without loss of information,
including whitespace. The XML equivalence provides a foundation for
the performance comparisons. A performance comparison of a C refer-
ence implementation of TSF and TAM to the popular Expat XML library,
also written in C, shows that TSF reduces deserialization processor time
by more than 80%.

Keywords:
Energy efficiency
Data serialization
IoT serialization
XML equivalence
JSON equivalence

　

*Corresponding Author:
Daniel Evans,
Pace University, United States;
Email: de36804p@pace.edu

1. Introduction

The rapid development of the Internet of Things
(IoT) has renewed interest in transaction process-
ing efficiency. The paper “Energy Efficiency: A

New Concern for Application Software Developers” [1] re-
cently detailed the interaction between energy issues and
software in IoT and mobile devices: “… wasteful, poorly
optimized software can deplete a device’s battery much
faster than necessary.” The initial energy supply of many
IoT sensor devices limits their deployment lifetime. These
devices sense information and transmit the results of
sensing. They receive instruction from remote controllers.
They continually serialize and deserialize transactions to
and from a communications medium. Any reduction in
processor time used by transaction serialization/deserial-

ization contributes to an increase of the deployed lifetime
of an IoT device. This work describes the Transaction
Serial Format (TSF), whose primary goal is to use as little
energy as possible to perform the serialization/deserializa-
tion tasks. The Transaction Array Model (TAM) supports
the efficiency of TSF. Although a dynamic data structure,
TAM directly integrates information from the TSF format.

1.1 Serialization Overview

The need for serialization and deserialization, converting
data to and from serial media such as communications
networks and long-term storage devices, has spawned
many designs. Wikipedia lists 35 different formats in its
“Comparison of Data Serialization Formats” page. The
differences are many and the reasons for development of
each are not always clear. However, they have a common

2

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

feature: the need to preserve data structure. The data struc-
turing facilities of random access memory are not feasible
when accessing data sequentially from beginning to end
one byte at a time.

Serialization formats generally fall into two categories:
formats specific to an application, and general formats
intended for use by any application. Examples of appli-
cation formats are Apache Avro [2] and Apache Parquet [3]
both designed for the Hadoop parallel processing system.
Binary JSON (BSON) [4] adds binary representations and
extensibility to JSON-structured data in the MongoDB
database system. Also in this category are language-spe-
cific serializations such as Java Object Serialization [5],
Python Pickle [6], and Perl’s DataDumper module [7], the
first of many PERL serialization modules. Remote Proce-
dure Invocation produced a number of formats designed
to marshal parameters for a remote procedure call and to
return the results. The Common Object Request Broker
Architecture (CORBA) specifies the InterORB Protocol

[8] for communication between clients and object request
brokers. The Java library provides the Remote Method
Invocation (Java RMI) [9] for Java programs to invoke re-
mote methods available on any machine running an RMI
server. D-Bus [10] is designed for both interprocess control
on a local machine and remote invocation. Apache Thrift
[11] is a design for cross-platform RPC. XML-based RPC
serialization came from Microsoft in the form of XML-
RPC [12], the ancestor to the World Wide Web Consortium
(W3C) SOAP standard [13].

General serialization formats are for any application,
and TSF is in this category. In addition to the basic re-
quirement of preserving data structure, many formats in-
corporate additional features that:

(1) Reduce the size of serialized data to minimize data
transmitted

(2) Use an external schema to describe the serial for-
mat(s)

(3) Work with multiple character encodings, such as
UTF-8, UCS-2, and UCS-4

(4) Use only characters recognized by a text editor
so that the serialized data is human-readable or easily
changed

(5) Address some additional need, such as machine-in-
dependent data definitions that could be exchanged by
machines of different architecture, or the restriction to 7-bit
or 8-bit clean so that data can be transmitted through gate-
ways and across networks with differing characteristics

In the following, we examine serialization formats that
incorporate one or more of these features, and note how
TSF compares to them.

Data compaction was an early issue for the telecom-

munications industry when transmission speeds were
much slower than they are today. The International Tele-
communications Union (ITU), the standards body for
international telecommunications, released in 1984, as
part of CCITT-X.409, the Abstract Syntax Notation, ver-
sion 1 (ASN.1), an interface description language (IDL).
In 1988, ASN.1 became a separate standard, X.208 [14].
ASN.1 has gone through several revisions and is currently
at Revision 5, but has not lost its original name, ASN.1.

ASN.1 is a declarative language (also called a schema
language) for describing messages as general structures of
arbitrary data types. A schema is a description of the seri-
alization format, which both sender and receiver have. An
ASN.1 schema declares data types first, and then declares
messages as structured sequences of previously declared
data types. ASN.1 provides an extensive set of built-
in type constructors as a foundation for complex types.
Every defined type has an unambiguous serial encoding,
commonly known as type-length-value encoding. ASN.1’s
Basic Encoding Rules (BER) define the rules for serializ-
ing data using bit- and byte- aligned fields. Initial imple-
mentations of ASN.1 compiled a schema of data types and
message declarations into source code in a language such
a C, providing both encoding and decoding functions. The
generated encoding and decoding functions, specific to the
described messages, could in turn be included as source
code, or compiled and linked as a library, into application
programs that sent and received the messages. ASN.1
found wide use within the telecommunications industry.
A subset of ASN.1 became the Simple Network Manage-
ment Protocol’s language for describing SNMP’s MIBs
(Management Information Base) [15], which are abstract
descriptions of network devices subject to management
by the protocol. ASN.1 also found use in applications that
use some form of the X.500 series of standards from the
CCITT, such as the exchange of cryptographic metadata
with X.509 certificates [16].

ASN.1 uses type codes and a schema to define and pre-
serve structure. Another common structure-preservation
technique is the use of delimiters that signify the begin-
ning and end of data and provide for data nesting. XML

[17] and JSON [18], two of the most popular formats in use
today, both use this technique. XML uses named parenthe-
ses, called open and close tags, to delimit and nest data.
JSON uses two types of structure delimiters, the charac-
ters “[“and”]” for arrays, and the characters “{“and”}”
for collections, which are named sequences of data. Col-
lections synonyms are associative arrays, maps, hashes,
or dictionaries in other computer languages. The YAML
format [19] uses indentation and the natural delimiting pro-
vided by line end characters to preserve data structuring.

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

3

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

The lines in the YAML format have additional syntax,
which may optionally include “flow” formats, close to the
delimited design of JSON. YAML is also user editable
with any general text editor program. Another delimited,
editable format is “s-Expressions”, originally designed
by John McCarthy, the inventor of Lisp, and described in
the Internet Memo [20] by Ronald Rivest. Like Lisp, it uses
left and right parenthesis as delimiters and nests delimited
data to provide structure. TSF does not use delimiters to
define serialized structure, but takes an approach that is
closer to ASN.1, although without a schema. Although
editing is not a design goal, TSF is editable with a normal
text editor, if done carefully to update lengths after adding
or deleting characters.

The concern for compact representations appears in
many early serialization formats, coincident with com-
munications speeds slower than today’s. ASN.1’s Basic
Encoding Rules are the prototypical example. Later for-
mats also dealt with compact representations. XML repre-
sentation efficiency became an issue soon after XML use
became widespread. The W3C chartered the XML Binary
Characterization (XBC) Working Group and the Efficient
XML Interchange (EXI) Working Groups in 2004. Both
groups worked in the area of efficient representation of
XML. The XBCWG produced the first draft of “XML
Binary Characterization Properties” [21] in late 2004. The
EXIWG produced its first draft in mid-2007 [22].

The work of these groups has always been informed
by the desire to preserve as much of the primary XML
specification as possible, and to be aware of XML schema
definitions when they exist.

“EXI is schema ‘informed’, meaning that it can utilize
available schema information to improve compactness
and performance, but does not depend on accurate, com-
plete or current schemas to work.”

The EXI working group ultimately produced a very
large code implementation of the specification and made
it publicly available, but it does not appear to have been
widely used.1

In 2012, the W3C-chartered MicroXML Community
Group produced the MicroXML specification [23]. The jus-
tification for MicroXML is at the beginning of the specifi-
cation document.

“MicroXML is a subset of XML intended for use in
contexts where full XML is, or is perceived to be, too large
and complex. It has been designed to complement rather
than replace XML, JSON and HTML. Like XML, it is a
general format for making use of markup vocabularies
rather than a specific markup vocabulary like HTML.”

1 The entire OpenEXI package download is 355 Mb. Compare this to the
total download size of 84Mb for the Expat XML parser.

MicroXML simplified XML by, among other things,
eliminating DOCTYPE’s, namespaces, processing in-
structions, CDATA sections, and character set options.
However, as MicroXML is a subset of XML, no alternate
serialization format was proposed.

Improved line speeds resulted in less attention to com-
pact representations, but the rise of mobile devices with
their bandwidth limitations kept compact representations a
concern, as evidenced by the recent Compact Binary Ob-
ject Representation, described in 2013 in RFC 7049 as “…
a data format whose design goals include the possibility
of extremely small code size, fairly small message size,
…” [24]. However, alternate compaction techniques have
found wider commercial use. Web servers that download
JSON have preprocessed the files to remove non-syntactic
whitespace, and sometimes renaming all the variables to
minimize their length, which has the effect of obscuring
the source code. The files can also be processed by a
standard compression algorithm, as all browsers have the
ability to process several compression formats. In TSF,
the elimination of redundancies yields some compaction,
but compaction is not a primary motivation for the format.
A TSF message is usually slightly smaller than its JSON
equivalent. Any standard compression technique can fur-
ther reduce the size.

Schema-based serialization formats tend to be more
compact as they can eliminate some or all type informa-
tion from the serialization by maintaining it in a separate
schema, generally written in a custom interface descrip-
tion language (IDL). ASN.1 again is the prototypical
example. A more recent example is Google’s Protocol
Buffers [25]. Once written, a Protobuf schema compiler
generates source code for any supported language. The
generated code then is included in any program that uses
the serialization described by the schema. Flatbuffers [26],
similar to Protobuf, can use both its own IDL and that of
Protobuf. TSF is not a schema-based serialization, but it
does use a technique called “zero-copy deserialization”,
also used by Flatbuffers, to reduce the number of memory
allocations required to construct the internal representa-
tion of a deserialized object.

Differences in machine architecture have motivated
some serial formats. The External Data Representation
first defined in RFC 1832 in 1995 and subsequently up-
dated eleven years later in RFC 4502 [27] provides serial
representations for standard binary data types such as
signed and unsigned integers, 64-bit integers, called hy-
per integers, floating point values, enumerations, fixed
length arrays, and more. However, the popularity of
character-based serializations seems to have provided an
alternate, simpler way to handle architecture differences,

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

4

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

as conversions from character forms to internal data types
are available on any machine and in every language. TSF
delegates the data format definitions to the application.

There are two serialization formats that have some
coincidental similarity to TSF. Bencoding, part of the Bit-
Torrent specification [28], serializes string data with a count
followed by a delimiter preceding a data field, similar to
TSF. However, Bencoding defines separate structures for
lists (arrays) and dictionaries (hashes) and does not iden-
tify occurrences. It also imposes an order on dictionary
strings. Binn [29], a more recent design, uses zero-copying
and counts for structures, like TSF, but defines types using
bit fields and varying length binary fields for data lengths
and container lengths. Unlike TSF, it has a number of
hard-coded data types, and three containers types, but it
does make a provision for user types.

1.2 TSF Design Objectives

Now that TSF has been differentiated by what it is not,
we follow the example set by CBOR [24] in RFC 7049 and
list the design objectives of the Transaction Serial Format
(TSF), in order of importance:

(1) The format must be efficiently deserialized.
(a) Deserialization should not require more than a few

pages of C code.
(b) The format must not require parsing for deserializa-

tion.
(c) The format must not use data units smaller than a

byte.
(d) The format must avoid forcing data into specific bit

representations.
(e) Deserialization should not require a schema.
(2) The design must be general enough to encode pop-

ular data formats such as XML and JSON, as well as other
common Internet formats.

(a) The format must support named and unnamed se-
quences, such as arrayed data.

(b) The format must support named and unnamed col-
lections, such as hashes.

(c) Data structuring must support collections of se-
quences, and sequences of collections.

(d) TSF is not a streaming format; it does not support
unspecified data lengths or occurrences.

(3) The internal (in memory) representation of a dese-
rialized transaction is integral to efficiency of the design
and must be easily created.

(a) Dynamic memory allocations should be minimized.
(b) Data should not need to be copied into the internal

representation.
(4) The format should support user data typing to allow

it to be adapted to specific user applications.

(5) The internal API must include a standard serializa-
tion.

(a) This is a common sense, ease of use objective.
(b) Contrast this with XML, which has no serialization

API.
(6) The serial representation should be reasonably com-

pact.
(a) Compactness is not a primary goal, but the equiva-

lent JSON size is a compactness target.
(b) Redundancies such as end tags and extra delimiters

should be avoided.
The primary goal of efficiency is a result of the sim-

plicity of the TSF design. Figure 1 shows the complete
lexical structure of TSF.

Figure 1. TSF Complete Lexical Structure

The following sections examine the design in detail
and discuss the performance impact of TSF and its sister
memory representation, TAM.

1.3 Summary

Section 1 (this chapter) introduces TSF and differentiates
it from related works on serialization. It presents the goals
that have guided the TSF design and summarizes the com-
plete lexical structure in Figure 1.

Section 2 presents the detailed design of TSF and illus-
trates TSF message deserialization without parsing. The
lexical processing is limited to recognizing a sequence of
digit characters as a number, and scanning to the end of
names. The lexical grammar that underlies the TSF design
illustrates the simple one-character lookahead require-
ment. An informal proof shows the grammar produces
TSF lexical units.

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

5

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

Section 3 discusses the application of TSF to JSON. It
generalizes the definition of a TSF name, and shows that
it is possible to encode JSON data in equivalent TSF.

Section 4 presents TAM, and discusses the efficiency
considerations that guide the design.

Section 5 applies TSF to XML. It shows that XML
documents are a series of lexical units when represented
in TSF, so that deserialization does not involve parsing.

Section 6 presents a comparison of the performance
of deserialization of XML documents using the Expat C
library implementations of the XML SAX parser, and the
C/C++ implementation of TSF/TAM deserialization.

Section 7 summarizes the results and discusses the
findings.

2. TSF Design

TSF provides a general serial transaction format. The TSF
library deserializes a TSF transaction to its Transaction
Array Model internal format with minimal processing by
compact code. Specific design goals are:

(1) Minimal processing for message serialization and
deserialization

(2) Simple in-memory representation of a deserialized
TSF transaction

(3) Standard serialization and deserialization API’s
(4) Reduction of redundant information, such as found

in XML and JSON formats
For IoT devices, the benefits are:
(1) Reduced energy usage
(2) Smaller memory footprint
(3) Operations with slower, cheaper CPU’s

2.1 Design

The elements of a TSF serialized message are lexical units
(LU’s), so called because recognition requires only simple
lexical processing. There are two abstract lexical units.
The first is a primitive lexical unit (PLU) that consists of
a sequence of digit characters specifying the data length,
a single type character that is not a digit, and length char-
acters of data. TSF extracts a PLU from a message by
lex’ing the length, recognizing the type, and extracting
the corresponding data. The type character serves to dis-
tinguish various PLU types, as desired by the application
using TSF. For example, type characters can distinguish
between integers and floating point numbers.

A PLU can optionally have a name. In a named PLU, the
name follows the initial length and ends with the type char-
acter. The name cannot begin with a digit and cannot contain
any type character. In the case of XML-equivalent serializa-
tion, this is a simple restriction. XML tag name and attribute

name come from a restricted character set. For complete gen-
erality, the restriction on name characters is removed with a
convention described when we consider JSON, which places
no restriction on the character composition of names.

The second type of TSF lexical unit is the structured
lexical unit (SLU). An SLU consists of a sequence of digit
characters specifying the contained unit count, a single
type character, which is not a digit, and count subsequent
LU’s. An SLU is a container in the sense that the count
identifies the number of immediately contained units.
Knowing the count at the beginning of the unit allows the
pre-allocation of needed storage. An SLU can also option-
ally have a name, with the name having the same location
and restrictions as a PLU name. Each SLU-contained
lexical unit may be any type, a named or unnamed PLU or
SLU. In the case of XML equivalence, XML elements and
lists of XML attributes are SLU’s. For JSON equivalence,
arrays and objects are SLU’s. In a TSF message, named
and unnamed lexical units occur in any combination.

Table 1 shows the syntax of the TSF lexical units. Syn-
tax descriptions use the Augmented Backus Naur Form
described in the IETF’s RFC5234 [30].

Table 1. TSF Message Definitions

TSFMessage = 1*LexicalUnits

LexicalUnits = PLU / SLU)

PLU = Length 0*1Name Type data

SLU = Count 0*1Name Type LexicalUnits

Length = Number

Count = Number

Number = 1*digit

Type = a character that is not a digit or a name character

Name = does not start with a digit, or contain any type charac-
ter

The actual characters used to indicate types can be cho-
sen to reflect the particular application. Type characters
and name characters are disjoint. As shown in Table 1,
type and name characters have the following restrictions:

(1) types cannot be digits
(2) names cannot start with a digit
(3) type characters cannot be used in names

2.2 Lexical Simplicity

This section discusses the syntax that describes TSF lexi-
cal units and shows that it requires only the simplest kind
of lexical processing, one-character lookahead.

The syntax descriptions shown in Table 1 exhibit the
lexical simplicity of TSF. The lexical units of TSF can be
recognized using only one lookahead symbol. Each lexi-
cal unit begins with a sequence of numeric characters. The

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

6

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

sequence is always terminated by a non-numeric character
that is either the start of a name or a type character. If the
type character implies a PLU, the numeric value is the
number of characters that constitute the value. Thus, in the
syntax description, this field, Data, is a terminal symbol.
If the type character implies an SLU, the numeric value is
the number of contained lexical units. This number also
implies the storage needed for the associated TAM node.

Table 2 gives an alternative, right recursive, description
of the TSF syntax. Instead of the ABNF zero occurrences
syntax, an ε alternative explicitly indicates nonterminals
that may be empty.

Table 2. TSF Right Recursive Syntax

TSFMessage = LexUnit LexList
LexList = ε/ LexUnit LexList
LexUnit = Number Name LUData
LUData = PLUType Data
LUData = SLUType LexList
Data = ε / data
Number = digit Digits
Digits = ε / digit Digits
Name = ε / firstchar Nchars
Nchars = ε / namechar Nchars

Figure 1 represent graphically the syntax of Table 2. In
the diagram, a rectangle is a nonterminal symbol. A termi-
nal symbol is a circle or elongated oval. The figure shows
that the TSF syntax obeys the following two rules:

Rule 1: For any nonterminal, the set of first symbols for
each of its alternatives is unique.

Rule 2: For any nullable nonterminal, such as LexUnit
and Name, which have the empty string as an alternative,
the set of its follow symbols is disjoint from the set of its
first symbols.

Together, these two rules guarantee that any sequence
of TSF lexical units can be unambiguously recognized by
looking at the next terminal in the sequence (one symbol
lookahead). Table 3 shows the first and follow sets.

Table 3. First and Follow Symbols for the TSF Syntax

Nonterminal Nullable First Symbols Follow Symbols

TSFMessage no digit
LexList yes digit
LexUnit no digit Digit

LUData no PLUType, SLU-
Type

Data yes data

Number no digit firstchar, PLUType, SLU-
Type

Digits yes digit firstchar, PLUType, SLU-
Type

Name yes firstchar PLUType, SLUType
Nchars yes namechar PLUType, SLUType

2.3 Type Characters

TSF does not define specific type characters for PLUtype and
SLUtype. These are user defined. The characters available for
type characters are implied by the simple syntax. A type char-
acter cannot be a digit, and cannot be a character that may
appear in a name. This is because lexically, the type character
signifies the end of a number or a name. When names are
defined as XML tag names or Javascript variable names, then
all the remaining ASCII characters between 32 (0x20) and
127 (0x7f) are available for types. Specifically, these are the
characters 32 to 47 (0x20-0x2f), 58 to 64 (0x3a-040), 91 to
96 (05b-0x60), and 123 to 126 (0x7b-0x7e). Although there
is no lexical reason why 0 to 31 (0x00-0x1f) and 127 (0x7f)
cannot be used, we avoid them to keep the TSF serializations
text-editable. The characters in use by an application are ini-
tially set through API initialization.

In Section 3, since JSON already has a string represen-
tation for each of its primitive types, all primitive types
are typed by a single “string” type using the single quote
character (’). The character “[” is the JSON array type,
and “{” is the JSON object type. The TSF serialization of
JSON therefore requires three type characters. A different
application could use more type characters to signify indi-
vidual encodings of JSON primitive types.

Section 5 shows how TSF can serialize XML. In this
TSF application, the type characters suggest XML mean-
ings. The characters “[”, “]”, “!”, “+”, and “?” are all
PLUType characters. The characters “<” and “=” are SLU-
Type characters.

2.4 TSF Message Generation

In order to show that the TSF syntax of Table 2 is an ac-
curate description of the TSF format, we show that the
syntax generates TSF strings, with the following informal
argument.

Beginning with a set consisting only of the goal sym-
bol, TSFMessage, a new set is created containing all the
strings generated by expanding TSFMessage. At each
subsequent step, a new set of strings is generated from the
previous set by replacement of the leftmost nonterminal of
each string by each definition of the non-terminal. The in-
tent of the process is to show that when a generated string
contains only terminals, it is a correct TSF message.

(1) TSFMessage generates one or more LexUnits.
(2) LexUnit generates a Number followed optionally by

a Name, followed by LUData. Name is optional since it
may generate the empty string.

(3) LUData is either a primitive LU, if it starts with
a PLUType (terminal) character or a structured LU if it
starts with an SLUType (terminal) character.

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

7

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

(4) A primitive LU is followed by Data, which may be
data (a terminal), or empty.

(5) A structured LU is followed by zero or more Lex-
Units.

(6) A Name is a sequence of terminals.
(7) A Number is a sequence of terminals.
The informal analysis shows that a TSFMessage is a

sequence of LexUnits, which is turn generate the terminal
sequences of either primitive or structured lexical units.
Therefore, the syntax generates only correct TSFMessages.

3. TSF JSON Equivalence

TSF’s design is easily applied to JSON, the Javascript Ob-
ject Notation. JSON is a character-based serial encoding
of general computing data structures that requires parsing
for deserialization. The web site “Introducing JSON” [18]
describes JSON as

“... built on two structures:
A collection of name/value pairs. In various languag-

es, this is realized as an object, record, struct, dictionary,
hash table, keyed list, or associative array.

An ordered list of values. In most languages, this is
realized as an array, vector, list, or sequence.”

A JSON collection is equivalent to a TSF SLU contain-
ing a sequence of named PLU’s and SLU’s. A JSON array
is a TSF SLU containing a sequence of unnamed PLU’s
and SLU’s. TSF’s internal data model, TAM, handles the
JSON data structures. Several export convention allow TSF
messages to be exported as either XML strings or JSON
strings. We should note that the primary purpose of TSF is
to transmit and receive messages with efficient serialization
and deserialization. This description of the application of
TSF to JSON underscores the generality of the TSF design.

3.1 Details of the Application of TSF to JSON

In order to apply TSF to JSON, we need:
(1) a PLU type for each of the JSON primitive types;
(2) a structured lexical unit type to identify arrays;
(3) a structured lexical unit type to identify collections;
(4) a convention for handling JSON names which con-

tain type characters, or that begin with digits.
In all cases, we will use TSF type characters that sug-

gest the JSON delimiters.

3.1.1 Primitive Types

Javascript’s primitive types include integers, floating point
numbers, strings, booleans, and a null type. However,
JSON does not encode these types differently, but instead
uses their string representations. With PLU types, it would
be possible to encode each JSON primitive type differ-

ently in a TSF transaction. However, for the pedagogical
purposes of this section, we keep the string encoding and
indicate all primitive types with the single quote type
character (’).

3.1.2 Collections

A collection is the first of two JSON data structures, and
is a sequence of named primitive and structured elements.
This is exactly what a TSF SLU is, and we will use the
left brace ({) as the SLU type character for a JSON col-
lection.

3.1.3 Arrays

Arrays are second of the two data structures encoded by
JSON. A separate SLU type character is needed for ar-
rays, and we will use the left bracket ([) for arrays. The
SLU count will be the number of elements in the array.
As with all SLU’s, an array can have a name, or it can be
unnamed.

3.1.4 JSON Names Containing TSF Type Charac-
ters

TSF expects lexical unit names, if they are present, to ex-
clude the characters that are used as type characters, (’, {,[),
so that the detection of a name can be accomplished by a
short scan forward until a type character is encountered.
In JSON, collection property names may contain any
character. JSON handles this by delimiting all names us-
ing double-quotes. Double-quotes in a name are handled
by escaping (preceding) a double-quote with a “\” char-
acter. Since the possibility of names containing the three
LU type characters is remote, it is not necessary to incur
the overhead of processing every name as if it possibly
contained a type character. The double-quote character (“)
used by JSON is a good introduction character to signify
that special processing should be done with a name. In a
TSF serialization, a name that starts with a double-quote
(“) will be processed as if it contained ‘\’ escape sequenc-
es. Any character following a ‘\’ is accepted as a name
character without further examination. An unescaped type
character will terminate the scan normally. As an example,
the four-character name {\[‘ will appear in a TSF serial-
ization as “\{\\\[\’. If the double-quote character appears
as a name character, it must be escaped.

There is one other subtlety regarding this convention.
A non-digit character always terminates TSF length and
count fields. In JSON, it is possible for a name to begin
with a digit character, so the ‘”’ name convention must
also be used in this situation. Digits in a name are not
escaped, but a name such as 64th must begin with the

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

8

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

double-quote, as “64th”. This convention allows a name to
be created from any sequence of characters, while keeping
the name processing simple in most cases.

3.2 String Export

TSF serializations of JSON can be exported as either
XML or JSON strings, by adopting certain conventions.
This is more of an academic exercise than a practical one,
but may be useful when a TSF message is exported from
the realm of IoT to a different computing environment.

3.2.1 Exporting TSF as JSON Strings

Serializing a JSON string in TSF is in a sense a lossy
transformation. Unlike XML, JSON ignores whitespace
on deserialization, so parsing JSON loses whitespace for-
matting. This is the only possible difference between an
input JSON string converted to a TSF representation and
the output string converted from that representation back
to JSON. If a JSON string has no ignorable whitespace,
the conversion to TSF and back to JSON is lossless.
However, TSF includes the possibility of preserving
whitespace using unnamed text lexical units if the JSON-
to-TSF converter recognizes and preserves whitespace.

3.2.2 Exporting TSF Serializations of JSON as
XML Strings

If a TSF serialization only uses names that are valid XML
names, it is always exportable as an XML string. With
several conventions, it is possible to maintain exportabili-
ty for JSON.

Unnamed Structured Lexical Units - An XML repre-
sentation requires a name, so in those cases, other than
arrays, where the JSON object is unnamed, a name can be
generated from the position, nesting level and sequence,
of the element.

Arrays - Array elements under the same parent have
the same name, generated from the position of the parent.
Optionally, the names can be unique by including the se-
quence number of the array element.

Arbitrary Property Names - Any name that does not
obey the name rules for XML element names will have
any invalid character converted to a five character se-
quence equivalent to the six character JSON UCS escape
convention (\uhhhh), but with the leading ‘\’ dropped.
With this convention, a name will start with a letter, and
contain only letters and digits.

Part II provides additional export conventions.

4. Transaction Array Model

The Transaction Array Model is the in-memory structure

of a deserialized transaction. TAM is a simple, conceptu-
ally straightforward, representation of a TSF transaction.
It features:

(1) minimization of the number of memory allocations
needed to create the structure

(2) an array structure to minimize the data fields devot-
ed to structure overhead

(3) use of the in-memory TSF transaction for data stor-
age, also call zero-copying

TAM combines the lexical units that are the immediate
content of an SLU into a single dynamically allocated
node. This node has the structure of a small table. See
Figure 2.
Row1 Type2 Name3 Length Value4 Length

1 if SLU name reference Length SLU reference length

2 if PLU name reference length PLU reference length

... PLU or SLU

n
1 row numbers are not part of the structure
2 an 8-bit type character
3 null if no name, otherwise a direct reference to the TSF transaction
memory
4 SLU: null if empty, or a TAM node reference
4 PLU: a direct reference to the TSF transaction memory

Additional Fields in the Node

a reference to the TSF transaction in memory
a parent reference to the node containing the SLU that references this
node
a count of the number of rows allocated in this node

a count of the number of rows used in this node

Figure 2. A Transaction Array Model Node (TAMNode)

4.1 TAM Creation

TAM attempts to reduce the dynamic allocations needed
to create the structure by taking advantage of the SLU
occurrence counts embedded in a TSF string. Each SLU
has an occurrence count for the number of directly con-
tained LU’s. TSF deserialization extracts these occurrence
counts from the TSF string at the start of SLU processing.
Each SLU count is the number of rows needed for the
SLU’s TAMNode. The full size of a TAMNode is thus
computable as soon as the number of rows is known. The
implications of this are different for each implementing
language. For example, in C, all of the storage needed for
a TAMNode is allocated with only a single dynamic mem-
ory request. In Java, where arrays must be allocated sep-
arately, more allocations are needed, but still, when com-
pared to the number of allocations needed for an XML
DOM representation, there is a significant reduction. This

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

9

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

reduction in dynamic allocations in TAM translates to re-
duced memory and processing overhead.

Figure 3 shows the pseudo-structure of a TAMNode
in C, with each of the attributes of the table declared in a
separate array.

struct TAMNode
{

char *tsfXact;
struct TAMNode *parent;
unsigned elemUsed;
unsigned elemCount;
char elemType[elemCount]
char *elemName[elemCount];
unsigned elemNameLen[elemCount];
void *elemValue[elemCount];
unsigned elemValueLen[elemCount];

};

Figure 3. A TAMNode

It is a pseudo-structure because in C, arrays, such as
elemName, cannot be declared with a computable size.
However, since the total number of lexical units (elem-
Count) is known before the structure is allocated, the
actual amount of storage needed can be computed. The
declaration in Figure 2 is informative. The actual structure
uses double pointers to locate each of the variable length
sections in the TAMNode so that they can be referenced
within C code as simple arrays, even though they cannot
be declared exactly as shown in the listing.

4.2 Value Storage

TAM also uses a compact approach to store names and
data. A TSF transaction is read as a single string, contigu-
ous in memory, and passed to a deserialize() method. Val-
ues and names are identified by their offset from the start
of the string and their length. In this way, no extra storage
or allocations are required. This is a language-neutral ap-
proach, and works for all languages such as Java, that do
not use string terminators. For C, an alternative is avail-
able, if the transaction consists only of character data. The
nature of the TSF lexical units allows each name and val-
ue to be 0-terminated. This is done on the fly as the TSF
message is being processed. Names and values are then
directly referenced as 0-terminated C strings. In either
case, whether offsets and lengths or 0-terminated strings,
names, and data values are all located in the original se-
rialized TSF transaction and no additional allocations are
required to store them. This is also true for generalized
names (described in Part I Section 3) after escape se-

quence removal.

4.3 The TAM Root Node

The individual nodes of a TAM structure are linked
through SLU references and parent references.

A TSF transaction always begins with an SLU that con-
tains the entire transaction, somewhat like an XML root
node. Figure 4 shows an example of this kind of node.
There is a reference to the root SLU’s name, and to the
TAM node that contains all the LU’s in the SLU.

When the transaction container does not have a name,
as is the case in JSON transaction serializations, an opti-
mization is possible. In this case, the only relevant data
is the reference, the value field of row 1 in Figure 3. This
reference can then become the reference to the new root
node, and the original root node is optimized away.

Type Name Length Value Length

= →name len →TAMNode n/a

→tsfxact

null (a parent reference)

1 (number of rows allocated in this node)

1 (number of rows used in this node)

Figure 4. A TAMNode with a Single Unnamed SLU

An example of this is the transaction shown in Figure 5.
The root SLU (‘=’) contains three LU’s, two PLU’s (‘+,‘!’)
and an SLU (‘<’), and is unnamed. (The figure shows the
embedded CR using the C escape convention ‘\n’ which
should be counted as a single character.)

3=9+ comment 31!doc [< !ELEMENT doc (#PCDATA)>\n]0doc<

Figure 5. A TSF Transaction With Three Top Level LU’s

The root node, representing the SLU containing three
LU’s, would store a reference to the node of Figure 5. Since
the only important field in the root node is the reference
to the child node, the root node can be dropped. The child
node reference becomes a reference to the new root node,
Figure 6. If the top level SLU has a name, then this optimi-
zation cannot be used, because the name must be referenced
in addition to the reference to the contained data.
Type Name Length Value Length

+ null 0 →“comment” 9

= null 0 →“doc [< !ELEMENT doc (#PC-
DATA)>\n]”

31

< →“doc” 3 null -

→tsfxact

null (a parent reference)

3 (number of rows allocated in this node)

3 (number of rows used in this node)

Figure 6. The Effective Root Node With Three LU’s

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

10

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

5. XML Equivalence: An application of TSF

This section presents an application of TSF to XML to
demonstrate the generality of TSF by showing that XML
documents can be completely represented in TSF. In
addition to the demonstration of generality, we discuss
XML equivalence to lay the foundation for performance
comparisons. Several short sections discuss various XML
issues such as DOCTYPE’s and namespaces.

5.1 Relevant XML Definitions

The following definitions from the XML 1.0 recommen-
dation [31] are relevant to the application of TSF to XML.
The numbers in square brackets within the tables are the
identifiers of the definitions in the XML recommendation.

5.1.1 XML Names

“A Name is a token beginning with a letter or one of a few
punctuation characters, and continuing with letters, dig-
its, hyphens, underscores, colons, or full stops, together
known as name characters.” [31]

Table 4. The Syntax of an XML name

[4] NameChar = Letter / Digit / “.” / “-” /“_” /“:” / CombiningChar /
Extender

[5] Name = (Letter / “_” / “:”) *NameChar

CombiningChar’s and Extender’s are classes of Uni-
code characters that are not relevant to TSF. What is im-
portant for its design is that a Name (called an XMLname
below) cannot contain the characters selected as type
characters.

5.1.2 Element Names and Attribute Names

Table 5 shows XML definitions relevant to TSF attribute
serialization.

Table 5. The Syntax of an XML Start Element Tag

[40] Stag = “<” Name *(S Attribute) *S “>”

[41] Attribute = Name “=” AttValue

The XML Recommendation’s ABNF definition of At-
tValue uses character exclusion, which makes definition
awkward, so we describe attribute values in English.

An AttValue can be any sequence of characters delim-
ited by leading and trailing single quotes, or leading and
trailing double quotes. Characters with XML syntactic
meaning cannot be coded literally in an AttValue, but must
be encoded using XML entity references. The relevant en-
tity references for attribute values are <, >, &,
', and ", for the characters “<“, ”>”, “&”, sin-

gle quote (0x27), and double quote (0x22), respectively.
The S in the definition represents XML white space. TSF
does not need entity references.

5.2 TSF Types for XML

TSF type characters identify the following XML types.
The definitions all begin with lower case characters
because they are terminal elements in the TSF syntax
description of XML (Table 7). As terminals, they do not
need any auxiliary processing, such as scanning.

xML-doctype-content - a DOCTYPE entity
xML-processing-instruction - a Processing Instruction
xML-comment - character data in an XML document

following the opening four character “<!--” sequence and
ending at the three character “-->” terminating sequence

xML-pcdata - parsed character data (XML PCDATA)
xML-cdata - character data (XML CDATA) (unexam-

ined character data)
xML-attribute-content - the sequence of characters,

which make up the value of an XML attribute; TSF do not
require XML entities for attribute content.

5.2.1 Lexical Units

Table 6 shows the XML lexical units.

Table 6. The Syntax of an XML Document as a TSF Mes-
sage

TSFXMLDoc = 1*(SLU / PLU)

SLU = Element / Attrs

PLU = Doctype / ProcInst / Comment / Text / Cdata / Attr

XML elements and attribute lists are represented by
Structured Lexical Units. Unstructured XML constructs
are represented by Primitive Lexical Units, shown in
Table 7 with their single character types. The number
is a length indicating the number of value characters
that follow the type character. The only PLU that has a
Name is the Attr. The Name conforms to the XML defi-
nition.

Table 7 TSF PLU Syntax for XML

Number = 1*digit

Doctype = Number “!” xML-doctype-content

ProcInst = Number “?” xML-processing-instruction

Comment = Number “+” xML-comment

Text = Number “[” xML-pcdata

Cdata = Number “]” xML-cdata

Attr = Number Name “[” xML-attr-content

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

11

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

Note that Text and Attr use the same type characters,
but there is no ambiguity because they occur in different
containers.

XML elements (Element) and attribute lists (Attrs) are
SLU’s, shown in Table 8. With SLU’s, the leading number
is the count of contained lexical units. With the Element
SLU, contained units include processing instructions,
comments, parsed character data (PCDATA), character
data (CDATA), and subsidiary (child) elements. The count
is greater than or equal to zero. The occurrence of Element
in the definition of Content provides the recursive defini-
tion for a nested XML data structure. With the Attrs SLU,
the count is the number of attributes in the attribute list.
If there are no attributes, there is no Attrs SLU, which is
distinguished by its type code.

Table 8. TSFString Count Unit Syntax

Element = Number Name Attrs “<” Content

Attrs = *1(Number “=” 1*Attr)

Content = *(ProcInst / Comment / Text / Cdata / Element)

5.2.2 DOCTYPEs, Processing Instructions, Com-
ments

A complete serialized format for XML transactions must
handle DOCTYPE’s, comments, and processing instruc-
tions that are outside the root element, as well as a single
document root element. The complete TSFXMLMsg,
Table 9, has an optional DOCTYPE followed by zero or
more processing instructions and/or comments, one XML
(root) element (TSFXMLDoc), and zero or more process-
ing instructions and/or comments. The TSFXMLMsg is
an unnamed SLU whose type character is ‘=’. This over-
loading of the ‘=’ character is not ambiguous since it is
not contained in an Element. Most often, a TSFXMLMsg
will be just the XML root element, composed of the lex-
ical units of the TSFXMLDoc definition. In this case, the
leading “1=” sequence can be heuristically implied and
omitted. For additional information about the root node,
see Section 4.3.

Table 9. TSFXMLMessage with Outside XML Elements

T S F X -
MLMsg = Number ‘=’ *1(Doctype) *(Procinst / Comment) TSFX-

MLDoc *(ProcInst / Comment)

5.3 Issues

5.3.1 TSF Encoding

An XML document is normally introduced with the

<?xml version=“1.0” encoding=“...”?>

processing instruction specifying the XML version and the
encoding of the following document. Until very recently,
there was only one XML version, 1.0. The new XML 1.1
version handles unusual situations that do not affect the
core of XML usage [32]

While the ability to exchange documents encoded with
different encodings is useful, an IoT application will nor-
mally select a single encoding. The UTF-8 encoding is a
superset of US-ASCII, UCS-2, and UCS-4, and is the en-
coding used for performance comparisons. The TSF/TAM
design addresses limited capability devices, often found in
sensor networks, and assumes that encoding, once decid-
ed, is not an issue.

The TSF design does not preclude the use of other
encodings should an application have need for it. The ap-
plication can design a leading PLU to convey encoding.
The code accompanying this work comes in two versions:
extended (8-bit) ASCII using 8-bit characters internally,
and UTF-8 encoding using 32-bit (UCS-4) characters in-
ternally.

Eight-bit encoding is important in that it can support
binary data in a TSF transaction. Since TSF does not parse
data, it can have any 8-bit value, so TSF supports direct
binary transmission.

5.3.2 Namespaces

XML namespaces are not given any special treatment by
TSF. An XML name or attribute name may have a name-
space prefix. The prefix-qualified name, when it occurs, is
a normal XMLname in the format. Namespace URL’s are
represented in the normal way as attributes. With name-
spaces, the colon character becomes a name character and
therefore cannot be a type character.

5.3.3 Character and Entity References

XML markup gives certain characters special meaning.
The XML need for special sequences to provide for these
characters as normal data characters has been mentioned
above.

TSF does not parse data, so it has no need for these
sequences. All data characters appear in a TSF string in
their normal encoding. There is no additional escaping of
special characters needed.

5.3.4 XML Document Reconstruction

The application of TSF to XML encompasses all XML
documents, and supports a complete reconstruction of any
TSF-encoded XML document. However, there are cer-

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

12

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

tain limitations to exact document reconstruction brought
about by parsers and XML equivalences:

(1) The order of attributes is XML-parser dependent.
(2) The form of an empty XML element is optionally

selectable.
(3) The preservation of whitespace outside the root ele-

ment does not occur.
(4) The preservation of white space within an XML

start element tag is parser-dependent.
(5) Line end sequences are optionally selectable.

5.4 The Overhead of TSF

Although the motivation for TSF is not compactness, a
side effect of the format is a smaller transaction when
compared to its XML equivalent.

PLU’s each have one character indicating the type and
a length field whose width is dependent upon the number
of data characters in the unit. If l is the number of data
characters, the width of the length field is [log 1], so, with
the type character, the PLU overhead is 1+[log 1]

SLU’s have the same kind of overhead. If c is the count
of contained lexical units, the width of the count field is
[log c], so, with the SLU type character, the overhead is
1+[log c].

A simple XML element whose name is n characters has
an overhead of 5 + n. This reflects the 5 delimiter char-
acters, 2 <, 2 >, and 1 /, plus an extra occurrence of the
name in the end element tag.

An XML element with only PCDATA is equivalent to
an SLU/ PLU combination.

Table 10 summarizes the overhead of various lengths
of an SLU/PLU combination vs an XML element.

Table 10. TSF Overhead Compared to XML

Data Length

Unit Character Overhead 1-9 10-99 100-999

SLU + PLU 3+[log datalength] 4 5 6
XML Element (length n

name) 5 + n 5 + n 5 + n 5 + n

For a simple XML element whose name is n characters,
the XML overhead is n + 5. The primary size difference
between a TSF string and its equivalent XML is the miss-
ing redundant end tag name. The savings improves with
the number of elements in a transaction. Section 6, Table
13 shows test file size comparisons between XML and
TSF.

5.5 Examples

A few examples of TSF serialization are shown to illus-
trate the foregoing descriptions.

Table 11. TSF Examples

Form Serialization*

XML <project/>

TSF 0project>

XML <ns:personnel xmlns:ns=“urn:foo”><ns:person id=“-
Boss”/><ns:person id=“worker”/></ns:personnel>

TSF 3ns:personnel<1=7xmlns:ns[urn:foo1ns:person<1=4id[-
Boss1ns:person<1=6id[worker>

XML <?peri rset?><!--Introduction--><project>content</project><!--
Epilog--><?peri sset?>

TSF 5=9?peri rset12+Introduction1project<7[content6+Epilog9?peri
sset
* line wrapping is not part of the serialization

5.6 Embedding TSF in XML

An XML Processing instruction can embed a TSF string
in order to send it within an existing XML infrastructure.
A program using the XML SAX API could then handle
the TSF PI as a special case. Consider

<?tfx TSFString?>

As in all situations where control characters may be
recognized as data, if XML is going to recognize the end-
ing processing instruction two-character sequence ‘?>’,
it cannot appear in the TSFString. The sequence is never
part of the TSF control structure, so the only potential
conflict would be in application data.

6. TSF/TAM Performance

This section compares the performance of standard XML
deserialization processing against TSF deserialization.
The focus of the performance testing is on deserialization,
as opposed to serialization, because, of the two opera-
tions, deserialization has a formal API. XML parsing has
two standard deserialization API’s, SAX and DOM. XML
serialization depends upon the internal data model. Some
libraries will provide serialization from DOM, but if one
is using a SAX parser for performance, then one is also
building a custom data structure from the parse, which
implies that a serializer must also be custom. The TAM
library provides a serializer, which could be compared to
an XML DOM serializer, should one desire, but the fol-
lowing compares only deserialization performance.

6.1 Test Files

Table 12 shows the input test files and their IDs, used as
reference in other tables. The ID’s are assigned in file size
order. The size in bytes and a brief description are includ-
ed.

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

13

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

Table 12. Test File Descriptions

ID File Name File Size Description

F1 future001.xml 70358 Scenario file from the Mana Game
Series

F2 bpmnxpdl_40a.xsd.
xml 160946 XSD file for XPDL 2.0

F3 eric.map.osm.xml 218015 OpenStreetMap export from northern
Wva

F4 cshl.map.osm.xml 298233 OSM export of a research laboratory
F5 sccc.map.osm.xml 404977 OSM export of a community college

F6 British-Royals.xht-
ml 482666 British Royalty Lineage from Alfred

the Great
F7 csh_lirr_osm.xml 712661 OSM export of a train station

F8 exoplanet-catalog.
xml 2147926 NASA Kepler Exoplanet Catalog

F9 LARGEbasicXML.
xml 3420388 Military Strategy Game Unit Order

of Battle

Table 13 compares the sizes of the XML test files and
their TSF equivalents.

Table 13. Test File Size Comparisons

ID XML Size TSF Size Reduction

F1 70358 54049 23.18%
F2 160946 142280 11.60%
F3 218015 206800 5.14%
F4 298233 284065 4.75%
F5 404977 386928 4.46%
F6 482666 477051 1.16%
F7 712661 677853 4.88%
F8 2147926 1456993 32.17%
F9 3420388 2797092 18.22%

Table 14 shows the XML characteristics of each file.
Files F3, F4, F5, and F7 are similar and serve as a consis-
tency check. Although differing slightly in size, the table
shows that they have the same internal structure. The oth-
er files were selected because of their size and differing
internal structures. Detailed explanations of the columns
follow Table 14.

Table 14. Test File Characteristics

Lex Avg Depth Children

ID Elems Attrs DATA Cmt Units Bytes Avg Max Avg Max

F1 1936 6 2596 0 4538 11.9 3.5 7 2.2 251
F2 2565 3317 4011 29 9922 14.5 3.7 11 2.4 379
F3 2515 11021 2815 0 1631 12.8 1.6 3 1.3 2017
F4 3544 15360 3616 0 22520 12.8 1.6 3 1.3 2709
F5* 5135 20566 5294 0 30995 12.6 1.7 3 1.3 3523
F6 4589 391 7948 5 12934 36.9 10.2 15 2.0 3556
F7* 8630 36855 8915 0 54400 12.6 1.6 3 1.3 6385
F8 168728 420 66247 0 235395 6.2 6.0 7 1.4 4215
F9 73156 15989 146227 1 235373 11.9 4.6 6 3.0 1129

* contains multibyte characters

Table 14 column explanations:
Elems - the number of individual XML elements in the

document
Attrs - the total number of attributes on all the elements

in the document
DATA - the total number of CDATA and PCDATA oc-

currences in the document
Cmt - the number of comments in the document
Lex Units - the total number of lexical units in the doc-

ument, which should equal the sum of the previous four
columns

Avg Bytes - (per lexical unit) the number of bytes in
the document divided by the number of lexical units

Avg Depth - the average depth of the subtree below an
XML element

Max Depth - the maximum depth of the document; the
maximum n umber of elements encountered in the path
from the root to the lowest leaf element

Avg Children - the average number of child elements
for any given element (Max Children omitted from this
calculation to avoid skewing the value)

Max Children - the maximum number of children par-
ented by any element; in these documents, this is almost
always the number of children of the root element

6.2 Performance of the TSF Implementation
Compared to Libexpat

Libexpat [33] is a library, written in C, for parsing XML
documents. It is a popular parser used in many indus-
try-wide programs, including the open source Mozilla
project, Perl’s XML::Parser package, and Python’s xml.
parsers.expat module. It has undergone extensive devel-
opment, testing, and release-to-release improvements.
The release used for the following work is libexpat-2.2.6.
The C compiler used to build TSF/TAM, libexpat, and the
deserialization performance drivers on the MacBook Pro
is:

Apple LLVM version 10.0.0 (clang-1000.10.44.4)
Target: x86_64-apple-darwin18.2.0
Thread model: posix
Processor: 2 GHz Intel Core i7
The performance tests were run on the same machine.
Note the following points when reading the information

on comparative performance statistics between libexpat
and TSF/TAM:

(1) Libexpat is a SAX parser. Libexpat XML file pars-
ing uses minimal callback functions build a document
tree, in order to correspond to the work done to build the
Transaction Array Model when deserializing TSF.

(2) The SAX callbacks build a stripped-down DOM.
In order to minimize memory allocation overhead, single

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

14

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

allocations are used for multiple strings. For example, to
build an attribute element from name and a value, a single
memory request is made and the null-terminated name
and value are both copied into the allocation.

(3) Namespace processing in libexpat is disabled to
correspond with the TSF design. In this situation, libexpat
treats a namespace prefix-qualified tag name or attribute
name as a single sequence of characters. xmlns-prefixed
attribute names are not significant.

(4) CPU time is collected using the getrusage() C li-
brary function.

(5) All processing is done using in-memory input with
no threading.

Table 15 shows Libexpat CPU times to deserialize each
of the nine test files. There are five separate runs for each
file and the mean and standard deviations for the runs are
shown in the last two columns. Table 16 shows equivalent
statistics for TSF deserialization operating on each of the
test files over five runs. Note that this is an apples-to-apples
comparison in that the TSF program is working with UTF-
8 TSF files and supports a UCS-4 character set internally.

Table 17 shows the performance of an 8-bit character
implementation of the TSF algorithm, using the seven
input files that do not have multi-byte character input. As
expected, the improvement is even better.

Table 15. Five Run Deserialization Performance Using a
Libexpat C library (microseconds CPU time)

File Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stdev
F1 3051 2856 3213 3360 3126 3121.20 167.77
F2 7501 7046 7704 7786 7184 7444.20 287.69
F3 11413 11025 11053 11114 11287 11178.40 148.48
F4 15635 15704 15531 15117 16352 15667.80 398.15
F5 23402 22393 25996 21137 22454 23076.40 1627.62
F6 10001 10922 11212 11100 10938 10834.60 430.37
F7 42218 40058 44230 41468 39866 41568.00 1593.46
F8 114265 121418 125337 134613 128113 124749.20 6781.90
F9 158042 195949 180174 181541 185936 180328.40 12438.86

Table 16. Five Run Deserialization Performance Using a
Wide Character C Implementation of the TSF Algorithm

(microseconds CPU time)

File Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stdev

F1 662 585 579 551 550 585.40 40.85
F2 1678 1442 1398 1397 1402 1463.40 108.60
F3 2616 2053 2469 1887 1894 2183.80 302.43
F4 3134 2549 2836 2681 2592 2758.40 211.96
F5 4208 4166 3842 3663 4295 4034.80 240.97
F6 3367 2413 2670 3332 2482 2852.80 414.33
F7 7355 7097 6759 6549 6450 6842.00 339.00
F8 20513 20151 19287 21379 21208 20507.60 757.23
F9 35575 35133 29692 29965 37841 33641.20 3246.97

Table 17. Five Run Deserialization Performance Using a
C 8-bit Implementation of the TSF Algorithm (microsec-

onds CPU time)

File Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stdev

F1 409 402 402 411 401 405.00 4.15

F2 1285 1050 1050 1050 1050 1097.00 94.00

F3 1372 1468 1339 1302 1335 1363.20 56.90

F4 2081 1809 1814 2042 1813 1911.80 122.86

F6 1203 1102 1084 1083 1133 1121.00 44.82

F8 19242 23759 22204 19090 16728 20204.60 2485.44

F9 21972 21580 21138 20849 21530 21413.80 386.72

Table 18. Deserialization Performance Improvement Fac-
tor, TSF vs Libexpat

File ID F1 F2 F3 F4 F5 F6 F7 F8 F9 Mean

TSF Improvement (UTF-
8) 5.3 5.1 5.1 5.7 5.7 3.8 6.1 6.1 5.4 5.4

TSF Improvement (8-bit) 7.7 6.8 8.2 8.2 - 9.6 - 6.1 8.4 7.9

Table 18 summarizes the deserialization performance
improvement provided by TSF (UTF-8). The improve-
ment factor is the mean Expat CPU time divided by the
mean TSF CPU time for each file. The overall mean im-
provement factor is 5.4, a reduction of the CPU time of
more than 80%.

As an additional indication of the consistency of the
results, the CPU times for both libexpat XML deserializa-
tion and TSF deserialization are highly correlated with the
number of lexical units in each file, given in Table 14. For
TSF, the correlation is 0.956. For libexpat, the correlation
is 0.975.

The reduction in deserialization time for TSF by a fac-
tor of 5.4 in comparison to XML shows that TSF can be a
significant energy reduction component of an IoT device
that sends and receives structured data.

As an added bonus, the headers and source code for
TSF/TAM total less than 600 lines. The source code for
the libexpat XML parser is approximately 15,400 lines.

7. Conclusion

As the Internet of Things expands with limited capability
devices, efficient transactions formats can help move data
faster, and with less energy. Less energy means a longer
field life for an IoT device that does not have an external
power source. The Transaction Serialization Format pro-
vides such a format. It is general enough to support full
XML document and JSON object serialization and dese-
rialization for a small fraction of the memory and CPU
cost, as demonstrated by performance analyses comparing

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

15

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

a traditional XML library. The Transaction Array Model
provides a simple internal memory structure for handling
the lexical units of a TSF message. The TAM structures
can be created and destroyed with fewer requests for
dynamic memory than needed for the well-known XML
Document Object Model, and at the same time are memo-
ry conservative.

The code supporting this work is available from https://
github/dde/TSF.

References

[1] G. Pinto and F. Castor. Energy Efficiency: A New
Concern for Application Software Developers. Com-
munications of the ACM, 2017.

[2] Apache Group. Apache Avro. 2012. [Online]. Avail-
able at: https://avro.apache.org/docs/current/spec.
html

[3] Apache Parquet. 2013. [Online]. Available at:
 https://parquet.apache.org/documentation/latest/
[4] MongoDB, Inc. BSON (Binary JSON). 2018. [On-

line]. Available at:
 http://bsonspec.org
[5] Java Language. Java Object Serialization. 1993. [On-

line]. Available at:
 https://docs.oracle.com/javase/8/docs/technotes/

guides/serialization/index.html
[6] G. van Rossum. Python Pickle - PEP 3154. 2011.

[Online]. Available at:
 https://www.python.org/dev/peps/pep-3154/
[7] L. Wall. PERL Modules DataDumper, FreezeThaw,

Storable. 1991. [Online]. Available at:
 https://perldoc.perl.org/Storable.html
[8] The Object Management Group. CORBA. 2008.

[Online]. Available at:
 https://www.omg.org/spec/CORBA/3.1/Interopera-

bility/PDF
[9] The Java Language. Java Remote Method Invoca-

tion. 1993. [Online]. Available at:
 https://docs.oracle.com/en/java/javase/13/docs/api/

java.rmi/module-summary.html
[10] H. Pennington et al.. The D-Bus Specification. 2003.

[Online]. Available at:
 https://dbus.freedesktop.org/doc/dbus-specification.

html
[11] Apache Group. Apache Thrift. 2007. [Online]. Avail-

able at:
 http://thrift.apache.org/static/files/thrift-20070401.

pdf
[12] D. Winer. XML-RPC. 1998. [Online]. Available at:
 http://xmlrpc.scripting.com
[13] M. Gudgin et al., Eds. SOAP Version 1.2. 2007. [On-

line]. Available at:
 https://www.w3.org/TR/soap12/
[14] International Telecommunications Union. Specifica-

tion of Abstract Syntax Notation One (ASN.1). ITU
Standard (Blue Book), 1988. [Online]. Available at:

 https://www.itu.int/rec/T-REC-X.208/en
[15] K. McCloghrie, D. Perkins, J. Schoenwaelder, Eds..

RFC 2578 - Structure of Management Information
Version 2 (SMIv2). 1999. [Online]. Available at:

 https://tools.ietf.org/html/rfc2578
[16] International Telecommunications Union. X.509 - IT

OSI - Public-key and Attribute Certificate Frame-
works. 2008. [Online]. Available at:

 https://www.itu.int/rec/T-REC-X.509
[17] T. Bray, J. Paoli, C. M. Sperberg-McQueen, Eds..

Extensible Markup Language (XML) 1.0. February
1998. [Online]. Available at:

 https://www.w3.org/TR/1998/REC-xml-19980210
[18] D. Crockford. Introducing JSON. 2005. [Online].

Available at:
 http://json.org/
[19] O. Ben-Kiki, C. Evans,d I. döt Net. YAML Ain’t

Markup Language - Version 1.2. 2001. [Online].
Available at:

 https://yaml.org/spec/1.2/spec.html
[20] R. Rivest. S-Expressions. 1997. [Online]. Available

at: http://people.csail.mit.edu/rivest/Sexp.txt
[21] M. Cokus, S. Pericas-Geertsen, Eds.. XML Binary

Characterization Properties, W3C Working Draft 05,
2004. [Online]. Available at:

 https://www.w3.org/TR/2004/WD-xbc-proper-
ties-20041005/

[22] J. Schneider et al., Eds.. Efficient XML Interchange
(EXI) Format 1.0 - W3C Working Draft 16, 2007.
[Online]. Available at:

 https://www.w3.org/TR/2007/WD-exi-20070716/
[23] J. Clark, J. Cowan, Eds.. MicroXML. October 2012.

[Online]. Available at:
 https://dvcs.w3.org/hg/microxml/raw-file/tip/spec/

microxml.html
[24] C. Bormann, P. Hoffman. Compact Binary Object

Format. 2013. [Online]. Available at:
 https://tools.ietf.org/html/rfc7049
[25] Google. Protocol Buffers. 2008. [Online]. Available

at:
 https://developers.google.com/protocol-buffers/docs/

proto
[26] W. van Oortmerssen. Flatbuffers, 2014. [Online].

Available at:
 https://github.com/google/flatbuffers
[27] M. Eisler, Ed.. RFC 4506 - XDR - External Data

Representation Standard. 2006, obsoletes RFC 1832.

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

16

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

[Online]. Available at:
 https://tools.ietf.org/html/rfc4506
[28] B. Cohen. Bencoding - Part of BitTorrent. 2008. [On-

line]. Available at:
 http://bittorrent.org/beps/bep_0003.html
[29] B. Ramos. Binn - Binary Data Serialization. 2015.

[Online]. Available at:
 https://github.com/liteserver/binn/
[30] D. Crocker, Ed.. RFC 5234 - Augmented BNF for

Syntax Specifications: ABNF. Internet Engineering
Task Force Request for Comments, January 2008.
[Online]. Available at:

 http://www.ietf.org/rfc/rfc5234.txt

[31] T. Bray et al., Eds.. Extensible Markup Language
(XML) 1.0 (Fourth Edition) - W3C Recommendation
16 August 2006. W3C Recommendation, August
2006. [Online]. Available at:

 https://www.w3.org/TR/2006/REC-xml-20060816/
[32] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,

F. Yergeau, J. Cowan, Eds.. Extensible Markup Lan-
guage (XML) 1.1. August 2006. [Online]. Available
at:

 https://www.w3.org/TR/2006/REC-xml11-20060816
[33] The Expat Development Team. LibExpat - Version

2.2.6. 2018. [Online]. Available at:
 https://libexpat.github.io

DOI: https://doi.org/10.30564/jcsr.v2i2.1620

