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The aim of the study is to obtain the alpha power Kumaraswamy (APK) 
distribution. Some main statistical properties of the APK distribution are 
investigated including survival, hazard rate and quantile functions, skew-
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We provide a real data application and show that the APK distribution is 
better than the other compared distributions fort the right-skewed data 
sets.
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1. Introduction

There are many statistical distributions in literature 
but it is always possible to develop both more 
flexible and more suitable specific real world sce-

narios. The Kumaraswamy distribution may be a family 
of continuous probability distributions characterized 
on the interval (0,1). Poondi Kumaraswamy [1] initially 
proposed this distribution for factors that are lower and 
upper bounded. Kumaraswamy distribution has nume-
rous of the properties of the beta distribution conjointly 
has a few advantages in terms of tractability. For case, 
its cumulative distribution encompasses a closed form, 
the quantile functions are effortlessly obtainable, and 
one can easily generate random variables from Kuma-
raswamy’s distribution. Kumaraswamy appeared that 
the well-known probability density funcions (pdf) such 
as the log-normal, normal, and Beta distributions don’t 
fit well for hydrological data like day by day rain fall 

and day by day stream flow. Kumaraswamy [2] created 
a more common density function for double-bounded 
random processes, which is known as Kumaraswamy’s 
distribution. This distribution is applicable to numerous 
natural phenomena whose results have lower and upper 
bounds, such as the heights of individuals , scores gotten 
on a test, barometrical temperatures, hydrological infor-
mation, etc. Moreover, this distribution may be suitable 
in circumstances where researchers utilize probability 
distributions that have interminable lower or upper 
bounds (or both) to fit information, when in reality, the 
bounds are limited [3,4]. In spite of the fact that the Kuma-
raswamy distribution was presented in 1980, the primary 
hypothetical examination of it was presented by Mitnik 
[5,6]. He derived an expression for the minutes, considered 
the distribution’s restricting distributions, presented an 
explanatory expression for the mean absolute deviation 
around the median as a function of the parameters of the 
distribution, established a few bounds for this scattering 
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measure and for the variance, and examined the relati-
onship between the Kumaraswamy distribution and the 
Beta family of distributions. Garg [8] derived generalized 
order statistics from Kumaraswamy’s distribution. .Jones 

[9] considered the distribution’s skewness and kurtosis 
properties. In addition, he inferred common equations 
for L-moments and the moments of order statistics of 
the Kumaraswamy dispersion, determined maximum li-
kelihood estimation (MLE) for the parameters of Kuma-
raswamy distribution, and compared between the Beta 
and the Kumaraswamy distributions from a few points 
of view. The classical Bayesian estimators of the Kuma-
raswamy distribution for grouped and un-grouped data 
were obtained by Gholizadeh, Shirazi, and Mosalmanza-
deh [10]. Feroze and El-Batal [11] determined the maximum 
likelihood estimators based on Kumaraswamy dynamic 
Sort II censored data with random removals. Nadar, 
Papadopoulos, and Kızılaslan [12] utilized maximum li-
kelihood and Bayesian strategies to get the estimators 
of the parameters Kumaraswamy distribution based on 
record data. 

The PDF and cumulative distribution function (CDF) 
of the Kumaraswamy distribution are, respectively given 
as

f x x x x( ) = − ≤ ≤ > >αβ α βα α β− −1 1(1 ) , 0 1, 0, 0  (1)

F x x x( ) = − − ≤ ≤ > >1 1 , 0 1, 0, 0( α )β
α β  (2)

Plots for the density and cumulative distributive func-
tions of the Kumaraswamy distribution are presented in 
Figures 1.a and 1.b.

Figure 1. a. Graphs of the density function for the Ku-
maraswamy distribution

Figure 1. b. Graphs of the cdf for the Kumaraswamy 
distribution

There have been many methods to obtain more flexible 
distributions (see Lee et al. [13]). In recent years, Mahdavi 
and Kundu [12] have proposed Alpha Power Transformation 
(APT) by adding an extra parameter to a family of distri-
butions. This parameter provides more adaptability to pro-
posed family. Mahdavi and Kundu [12] used APT method 
to the exponential distribution and obtain the alpha power 
exponential (APE) distribution. Dey et al. [14] introduced 
alpha power transformed generalized exponential (αPT-
GE) distribution. Then Dey et al. [15] obtained alpha power 
transformed Weibull (APTW) distribution which contains 
APE distribution for λ =1 and alpha power transformed 
Rayleigh (APTR) distribution λ =2.

Let f(x) and F(x) be the pdf and the cdf of a continuous 
random variable X, respectively. The APT of cdf, pdf, sur-
vival and hazard rate functions are, respectively, given by 
for x∈ R is defined as follows:

F xAPT ( ) =





α

 ,               1            F x if
α

F x

(

( )

−
)
1
−1,      0  1if andα α> ≠

α =
 (3)
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 (6)

In this study, we propose Alpha Power Kumaraswamy 
(APK) distribution motivated by Kumaraswamy distribu-
tion and the APT (Alpha Power Transformation) method 
that mentioned above. In section 2, statistical properties 
for APK distribution are obtained including skewness, 
kurtosis, order statistics, survival, hazard rate and quantile 
functions. In Section 4 real data is used to evaluate per-
formance of proposed distribution. Finally, the study is 
completed in Section 5.

2. Alpha Power-Kumaraswamy Distribution

Motivated by APT method, we obtain APK distribution. 
The random variable X has a three-parameter APK distri-
bution if the cdf of X for x>0 as follows:

F x c c xAPK ( ) = ≠ > < <
c1 (1 )− −

c

x

−

α β

1
−1, 1,     , , 0,    0 1α β  (7)

and the corresponding pdf is obtained as

f x x x c cAPK ( ) = − ≠
α β* *

c −1
logc * * 1 * ; 1α α−1 ( )β −1 1 1− −( xα )β

 (8)

Figure 2 shows f(x) of APK distribution with different 
parameter values.

Figure 2. Plots of density function of APK distribution 
with several values of parameters

As seen in Figure 2, the pdf of APK is flexible and has 
various shapes for the several values of parameters.

3. Main Properties

3.1 Survival and Hazard Rate Functions 

Now, we will provide survival and hazard rate functions 
for APK distribution. The survival function of the APK 
distribution for x>0 is given as 

S x c c xAPK ( ) = − ≠ > < <1  1,     , , 0,    0 1c1 (1 )− −

c

x

−

α β

1
−1 α β

 (9)

Other important characteristic of the APK distribution 
is hazard rate function which is given by

h x cAPK ( ) = ≠

α β* *
c −1

logc * * 1 *

1

x x c

−

α α

c

−1

1 (1 )− −

c

(
x

−

α β

−

1
−1

)β −1 1 1− −( xα )β

; 1

 (10)

Plots of survival hazard rate function for the APK dis-
tribution are shown in Figure 3 and 4, respectively.

Figure 3. Graphs of density function of the APK distribu-
tion with several parameters values

Figure 4. Plots of the hazard rate function of the APK 
distribution with several parameter values

As seen in Figure 4, the APK distribution is bathtub 
shaped.

3.2 Quantile Function

Quantile function is important in statistics and this func-
tion is described by the inverse of the CDF given by 𝑄(𝑢) 
= inf{𝑥 ∈ 𝑅: 𝑢 ≤ 𝐹(𝑥)} = 𝐹−1(𝑥). Let 𝐹(𝑥) = 𝑢, then we 
have 

𝑄(𝑢) = {1 − [1 − log𝑐(1  + 𝑢 ∗ (𝑐 − 1 ) ) ]1 /𝛽}1 /𝛼 for 0 < 𝑢
< 1 , 𝛼 , 𝛽 > 0 (11)

where 𝑢 ~ Uniform(0,1). The 𝑝𝑡ℎ quantile function of 
APK distribution is obtained by 

𝑋 = {1 − [1 − log𝑐(1  + 𝑢 ∗ (𝑐 − 1 ) ) ]1 /𝛽}1 /𝛼 ; 0 < 𝑢 < 1 
 (1 2) 

In particular, the first three quantiles, 𝑄1, 𝑄2, 𝑄3 𝑄3 for 
the APK distribution, are obtained by setting

𝑢 =0.25 (25𝑡ℎ percentile), 𝑢 =0.50 (50𝑡ℎ percentile) and 
𝑢 =0.75 (75𝑡ℎ percentile), in Equation 12 respectively. The 
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median 𝑄2 is obtained from Equation (12) by substituting 
𝑢 =0.5. Therefore the median is obtained fort he APK 
distribution as follows:

M u= − − + − < <{ 1  1 log 1  * c 1 } ;  0   1  
 
 

c
 
 
 

1
2

( )
β
1

α
1

 (13)

Here, 25𝑡ℎ percentile and 75𝑡ℎ percentile are given by, 
respectively

Q u1 = − − + < <{1  1 log  } ;  0   1  
 
 

c
 
 
 4 4

c 3 β
1

α
1

 (14)

Q u3 = − − + < <{1  1 log  } ;  0   1  
 
 

c
 
 
 

3 1
4 4
c β

1

α
1

 (15)

Figures 5 and 6 presents 25𝑡ℎ and 75𝑡ℎ percentile func-
tions of the APK distribution for different parameter val-
ues.

Figure 5. Graphs of the 25𝑡h percentile functions of the 
APK distribution with several values parameters

Figure 6. Graphs of the 75𝑡ℎ percentile functions of the 
APK distribution with several values parameters

3.3 Skewness and Kurtosis

The coefficient of skewness is a measure of symmetry and 
the coefficient of kurtosis is also a measure of whether the 
data are heavy tailed or thin tailed. The Bowley’s skew-
ness is based on quartiles as follows: 

S =
Q Q Q     

     
     

3 1 1
4 2 4

Q Q

− +

   
   
   

3 1
4 4

2

−
 (16)

and the Moors’ kurtosis is given below:

K =
Q Q Q Q       

       
       

7 5 3 1
8 8 8 8

− − +

Q Q   
   
   8 8

6 2
−

 (17)

where Q(.) represents the quantile function. Note that 
the Bowley’s skewness and the Moor’s kurtosis can be 
obtained by Q(𝑢) which is given in Equation (11).

It is important to state that the distribution is symmet-
ric for 𝑆 = 0. When 𝑆 > 0, the distribution is positively 
(right-skewed). For 𝑆 < 0, the distribution is left-skewed 
(negatively-skewed). Similarly, as long as 𝐾 increases the 
tail of the distribution brings about heavier. A normal dis-
tribution has kurtosis exactly 3. If compared to a normal 
distribution, when 𝐾 > 3 (𝐾 < 3) its tails are longer (short-
er) and central peak is higher (lower).

The skewness, kurtosis, median and Q1, Q3of the APK 
distribution are listed in Table 1.

Table 1. The skewness, kurtosis, median and Q1, Q3 of the 
APK distribution with several values of parameters

Parameters
Q1 Median Q3

Skew-
ness

Kurto-
sisPower α β

0.1

0.5 0.5 0.04374 0.20418 0.54460 0.35935 1.08994

0.5 2 0.00324 0.01947 0.08096 0.58232 1.94818

0.5 7 0.00027 0.00176 0.00832 0.62948 2.31957

2 0.5 0.45732 0.67220 0.85905 -0.0697 1.07094

2 2 0.23868 0.37357 0.53342 0.08470 1.19361

2 7 0.12891 0.20502 0.30204 0.12079 1.24439

7 0.5 0.79968 0.89272 0.95752 -0.1788 1.19085

7 2 0.66410 0.75478 0.83564 -0.0572 1.22497

7 7 0.55693 0.63587 0.71031 -0.0294 1.24337

0.5

0.5 0.5 0.12122 0.43272 0.80346 0.08683 0.80416

0.5 2 0.01029 0.05530 0.18715 0.49101 1.50404

0.5 7 0.00090 0.00543 0.02234 0.57732 1.92367

2 0.5 0.59006 0.81106 0.94676 -0.2391 1.09221

2 2 0.31854 0.48494 0.65773 0.01883 1.13357

2 7 0.17351 0.27155 0.38663 0.07999 1.19000

7 0.5 0.86008 0.94192 0.98449 -0.3156 1.25449

7 2 0.72118 0.81320 0.88718 -0.1086 1.20846

7 7 0.60627 0.68903 0.76223 -0.0613 1.22406
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0.9

0.5 0.5 0.17880 0.54267 0.86932 -0.0539 0.79080

0.5 2 0.01648 0.08045 0.24014 0.42797 1.34859

0.5 7 0.00148 0.00826 0.03063 0.53475 1.75134

2 0.5 1.75134 0.85829 0.96559 -0.3194 1.16177

2 2 0.35831 0.53258 0.70003 -0.0199 1.12777

2 7 0.19621 0.30150 0.41836 0.05206 1.17794

7 0.5 0.88429 0.95727 0.99004 -0.3802 1.33279

7 2 0.74584 0.83526 0.90312 -0.1370 1.21939

7 7 0.04374 0.20418 0.54460 0.35935 1.08994

Table 1 indicates that the kurtosis and skewness increa-
se with increasing of the β,whereas these values decrease 
when power and α increase. So, APK distribution is platy-
kurtic for all values of the parameters.

3.4 Order Statistics

Let X1,X2,…,Xn be a random sample from any APK dist-
ribution. Let Xi:n indicate the ith order statistics. Now, we 
derive the pdf of the ith order statistics Xi:n (1≤i≤n) for 
APK distribution given by  

f f x F x F xi n i i i: = −
(i n i− −1 ! !)

n
(
!

)
  [ ( )]  [1 ( )]( ) İ n i− −1  (18)

where F(x) and f(x) are given in Equation (7) and (8) 
respectively. Therefore pdf for the ith order statistics beco-
mes

f xi n: ( ) =
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− −

−

1 1
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c1 1− −( xα )β

−1
i−1

 (19)

From this equation, for i=1, the density function of the 
minimum order statistics of the APK distribution is given 
by

f f x F x nf x F x1: 1 1 1 1n = − = −
(n

n
−
!
1 !)

  [1 ( ]  [1 ( ]( ) n n− −1 1( )  (20)

Then, we have 

f n1:n = αβ *

c x x c1 1− −( xα )β

* * 1 log( ) 1α α−1 ( − −)β

c

−1

−1

 
 
 
 

c1 1− −(

c

x

−

α )

1

β

−1
n−1

 (21)

and likewise, the pdf of the maximum order statistics 
(i=n,) of the APK distribution as follows:

f f x F x nf x F xn n n n n n: = =
(n

n
−
!
1 !)

  [ ( ]  [ ( ]( ) n n− −1 1( )  (22)

and we have

f nn n: = αβ *

c x x c1 1− −( xα )β

* * 1 log( )α α−1 ( − )

c

β

−

−1

1

 
 
 
 

c1 1− −(

c

x

−

α )

1

β

−1
n−1

 (23)

4. Estimation

If the Xi,i=1,2,…,n are independent APK random variable 
with unknown parameter c, then the probability density 
function of each Xi is given by

f x c x x c cAPK i i i( , * * 1 * ; 1) = − ≠
α β* *

c −1
logc α α−1 ( )β −1 1 1− −( xi

α )β

 (24)

The likelihood function L(c) is defined as

L c f x c( ) = ∏
i=

n

1
APK i( , )  (25)

Presently, in arrange to execute the strategy of maxi-
mum likelihood, we ought to find the c that maximizes the 
probability L(c). We have to be put on our calculus hats 
presently, since in arrange to maximize the function, we 
are getting to ought to separate the probability function 
with regard to c. In doing so, we’ll utilize a “trick” that 
frequently makes the differentiation a bit simpler. Note 
that the natural logarithm is an increasing work of x That 
is, if x1≤x2. then f(x1)≤f(x2). Meaning that the value of c 
that maximizes the normal logarithm of the probability 
function lnL(c) is additionally the value of c that maximi-
zes the probabilityfunction L(c).So, the “trick” is to take 
the derivative of lnL(c) (with respect to c) rather than ta-
king the derivative of L(c) Then we have 

lnL c lnf x c( ) =

= − ≠

∑
i=

n

∑
1

i=

n

1

ln x x c c

APK i

α β* *

(

c −

,

1
logc

)

* * 1 * ; 1i i
α α−1 ( )β −1 1 1− −( xi

α )β

 (26)

Now, taking derivative of the log likelihood,and setting 
to 0
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∂lnL c
∂c lnc c c

( )
= − − + − − ≡

n  
 
 
1 * 1  01 1n n x 

 
 

∑
i=

n

1
( i

α )β
 (27)

We can get maximum values of the parameters. By 
using most computer algebra systems we can examine this 
equations to dtermine which is MLE of the c

5. Application

In this section, we perform an application of the APK 
model to prove empirically its potentiality. We used 
data set that were pre-modeled by different distribution. 
Then, we provide a comparison of fits of other com-
petitive models. So as to compare the fits of the APK 
model with other competing distributions, we consider 
Akaike Information Criteria (AIC), Corrected Akaike 
Information Criteria (CAIC), Bayesian Information 
Criteria (BIC), Hannan-Quinn (HQIC), and log-likeli-
hood (LL). 

The data set is modelled with different distributions in 
some previous studies. These distributions are the weight-
ed Lindley (WL), Lindley (L) distributions from Shanker 
et al. [15]; three-parameter weighted Lindley (TPWL) dis-
tribution from Shanker et al. [16]; IE, generalized inverted 
exponential (GIE), inverse Rayleigh (IR) distributions 
from Sharma et al. [17] and Singh et al. [18] and inverse 
Lindley (IL) distribution from Sharma et al. [17].

The data set shown in Table 2 includes 44 survival 
times of patients get Head and Neck cancer disease. This 
data used in this paper was given by Efron [19]. The data set 
and its descriptive statistics are presented in Table 2 and 
Table 3, respectively.

Table 2. Survival times of patients get Head and Neck 
cancer disease

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47 68.46 
78.26 74.47 81.43 84 92 94 110 112 119 127 130 133 140 146 155 159 
173 179 194 195 209 249 281 319 339 432 469 519 633 725 817 1776

Table 3. Descriptive statistics of survival times data

Mean St.Deviation Variance Skewness Kurtosis

223,477 305,428 93286,413 3,504 15,387

It can be noticed from Table 3 that the data set is also 
right-skewed and leptokurtic with the coefficients of 
skewness and kurtosis.We normalized this dataset into 
(0,1) range in order to compress it. The goodness-of-fit 
statistics are presented in Table 4.

Table 4. The goodness-of –fit statistics fort he survival 
times data

AIC BIC AICc LL

APK -82.25304 -65.54790 -81.65304 44.12652

Normal -30.96772 -27.39934 -30.67504 17.48386

Beta -63.08005 -59.51167 -62.78736 33.54002

Kumaraswamy -65.65957 -62.09119 -65.36688 34.82978

The results in Table 4 shows that when the compare 
with the other distribution, the APK distribution has the 
lowest values of AIC, BIC, CAIC and the highest value of 
LL. From the result, we conclude that the APK distribu-
tion is a very flexible distribution to model right-skewed 
data sets. The parameter estimations are obtained as 
α=1.206, β=1.672, c=0.001 by maximum likelihood meth-
od.

6. Conclusion

In this study, the Alpha Power Kumaraswamy (APK) is 
obtained. Some important statistical properties of the APK 
distribution are obtained including survival, hazard rate 
and quantile functions, skewness, kurtosis. As seen from 
the plots of hazard function the proposed distribution 
could be useful to model data sets with bathtub hazard 
rates. Then, we provide a real data application and show 
that the APK distribution is better than the other compared 
distributions for right-skewed data sets. 
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