
26

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jeisr.v1i1.1135

Journal of Electronic & Information Systems

https://ojs.bilpublishing.com/index.php/jeis

ARTICLE

Computation Offloading and Scheduling in Edge-Fog Cloud Computing

Dadmehr Rahbari*　Mohsen Nickray
Department of Computer Engineering and Information Technology, University of Qom, Qom, Iran

ARTICLE INFO ABSTRACT

Article history
Received: 16 August 2019
Accepted: 27 September 2019
Published Online: 18 October 2019

Resource allocation and task scheduling in the Cloud environment faces
many challenges, such as time delay, energy consumption, and security.
Also, executing computation tasks of mobile applications on mobile de-
vices (MDs) requires a lot of resources, so they can offload to the Cloud.
But Cloud is far from MDs and has challenges as high delay and power
consumption. Edge computing with processing near the Internet of Things
(IoT) devices have been able to reduce the delay to some extent, but the
problem is distancing itself from the Cloud. The fog computing (FC),
with the placement of sensors and Cloud, increase the speed and reduce
the energy consumption. Thus, FC is suitable for IoT applications. In this
article, we review the resource allocation and task scheduling methods
in Cloud, Edge and Fog environments, such as traditional, heuristic, and
meta-heuristics. We also categorize the researches related to task offload-
ing in Mobile Cloud Computing (MCC), Mobile Edge Computing (MEC),
and Mobile Fog Computing (MFC). Our categorization criteria include
the issue, proposed strategy, objectives, framework, and test environment.

Keywords:
Cloud computing
Edge computing
Fog computing
Offloading
Scheduling

　

*Corresponding Author:
Dadmehr Rahbari,
Department of Computer Engineering and Information Technology, University of Qom, Qom, Iran;
Email: d.rahbari@stu.qom.ac.ir

1. Introduction

In recent years, wireless sensor networks (WSNs) have
been extensively developed independently or partially
from another system. WSNs collect data in health-

care, vehicles, smart home, and more. These networks as
the infrastructure for the IoT require real-time processing
and decision-making. Data transmission from end-sensor
nodes to the cloud by passing several mid-sensor nodes,
routers, and gateways have high total network power
consumption and delay [1]. In many sensitive cases such as
medical care and transportation systems, high delays in IoT
applications can lead to a patient’s death or cause an acci-
dent. Edge computing with processing near the IoT devices
have been able to reduce the network congestion and delay
to some extent, but the problem is distancing itself from

the Cloud [2,3].

Figure 1. Architecture of Edge-Fog Cloud computing

27

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jeisr.v1i1.1135

As a relatively new architecture, FC sits between the
cloud and the sensors, so data aggregation, processing,
and storage can be done near the sensors, as well as data
sent to the cloud data center only if necessary [4]. Process-
ing operations are performed by the fog nodes at the edge
of the network, where the sensors are, so the network
traffic decreases and the transport speed increases. Since
cloud computing reduces data transfer to the cloud, it con-
sumes less energy than the cloud [5,6].

According to Figure 1, FC has a hierarchical structure.
The sensors are at the lowest level of this architecture,
collecting data at specified intervals and delivering it to
the fog layer at the mid-level [7,8]. Fog nodes are respon-
sible for measuring, processing, and sending data to the
cloud. At the highest level, the cloud performs heavy stor-
age and processing operations.

Applications in this network can be run by multiple
modules by processors. Modules in each FD have differ-
ent tasks depending on the application type [9]. As a small
data center, FDs implement modules with their resources.
An appropriate way of allocating CPUs to modules is
to increase the resource efficiency of the fog nodes [10].
At FC, scheduling resources and modules is a chal-
lenge. Resource allocation can be performed according
to a number of QoS parameters [11]. The performance of
scheduling algorithms is evaluated using several parame-
ters, such as power consumption, waiting time, execution
time, task completion time as well as some security crite-
ria [12,13].

FC is a great architecture for IoT applications such as
smart home, wearables, health care and vehicles [14, 15]. For
example, in a treatment clinic, one or more FDs may be
used to monitor the activity of the elderly or special pa-
tients. In transportation systems, FD is also used to track
and control cars. FC has distributed architecture and cloud
has centralized architecture. The main advantage of FC is
that it can deliver services provided in cloud data centers
on the edge of the network near the end sensors [6].

Scheduling issues are classified into several types,
including resource allocation, load balancing, and offload-
ing. These categories are implemented in various archi-
tectures such as cloud, edge, and fog. Scheduling can be
monitored using a variety of parameters. There are also
different ways to solve these problems, each with its own
advantages and disadvantages. This research examines,
classifies and analyzes these challenges in various appli-
cations including the well-known IoT framework. In fact,
this paper categorizes the different methods of computa-
tion offloading and scheduling in Cloud, Edge, FC. Also,
another classification is presented for offloading mobile
computing. The main objectives of this paper are to:

(1) Provide a comprehensive review of the literature in
the scheduling and offloading issues.

(2) Categorize scheduling algorithms in a variety of
centralized and distributed computing.

(3) We summarize the research findings, conclude the
paper, and suggest some research subjects in scheduling
scope.

The rest of this article is organized in the following sec-
tions. In Section 2, the past works of scheduling methods
are provided. The mobile computing is explained in Section
3 and its offloading methods in MCC, MEC, and MFC are
presented in Section 4. Section 5 include an analysis and
comparison of offloading and scheduling methods. Sec-
tion 6 presents the summary and conclusions of this work.

2. Scheduling

Scheduling is in many areas. One of the meanings is to
plan entry and exit. These include the arrival and departure
schedules of ships on the docks [16-20], trucks in transit [21-23],
industrial equipment [24], and supply chains [25]. The sec-
ond meaning that is most often considered in networks is
the allocation of resources to input tasks. Here the second
meaning is of interest. Topics such as load balancing, load
prediction, reliability and fault tolerance in offloading,
resource provisioning, software-defined networking,
network function virtualization, and scheduling with fog
architecture are considered to be very appropriate devel-
opments that are at the beginning of the road today and
have a great deal of research.

Scheduling is responsible for optimizing CPU usage
and allocating resources appropriately to applications.
A scheduler, considering the possible sets of executable
tasks, decides in which order and where they will be exe-
cuted. Scheduling goals include cost, interest, maximiza-
tion of the number of executable tasks, use of VM or their
migration, energy consumption, error tolerance, reliability
and security [26]. Optimization strategies include heuris-
tic [27], meta-heuristic [28,29] and other methods. Resource
models include different VM deployment patterns, single
or multiple providers, medium data-sharing model, data
transfer, cost, static and dynamic types, resource sharing,
single VM pricing model and Delay is the supply of VM
[28,30].

2.1 Concepts of Resource Management

Customers can request multiple services at the same time.
There are various algorithms for allocating resources to
input tasks [13,4]. Resource management has three main
functions: provisioning, scheduling, and monitoring [31].

Resources provisioning: The term resource provision-

28

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

ing was used in the grid computing framework. Providing
suitable resources to works depends on the QoS parame-
ters. The consumer of the service communicates with the
agent of providing resources RPA and sends the application
(workflow). The RPA finds the right resources and selects
the best one based on customer needs. After submitting the
workflow to the RPA Information Center section, access
operations are performed according to customer request.
The process of selecting the source is the best source for
the workflow according to the requirements of the QoS [31].

Resource Scheduling: Challenges in providing re-
sources include dispersion, uncertainty, and heterogeneity.
Resource scheduling includes two functions as the alloca-
tion of resources and maps them. The purpose of resource
allocation is to allocate appropriate resources for tasks in
the correct order so that tasks can use resources effectively.
Resource mapping is the process of mapping tasks to suit-
able resources based on the quality of service and deter-
mined by the user in accordance with the SLA agreement.
Task scheduling is the allocation of VMs to tasks [31], that
is shown in Figure 2. In this figure, the meaning of the
physical machine in the cloud is the host of data center,
on the edge means the edge device and, in the fog, the fog
device.

Figure 2. Resource Scheduling

Resource monitoring: Monitoring and controlling
resource efficiency can improve system performance.
Therefore, a global supervisor is needed to examine how
resources are allocated. Supervisory criteria include CPU
usage, memory and storage space. The supervisor expects
tasks to be executed with minimal cost and time without
SLA violation [31].

2.2 Scheduling Objectives

The scheduling process assigns tasks within workflows to
appropriate resources according to specific scheduling cri-
teria. Scheduling parameters are effective in the success of
the workflow scheduling problem. Scheduling objectives
are classified into two groups based on the service ap-
proach: service provider and consumer services [32].

Consumer Service:

(1) Makespan: This criterion is equal to the time all
tasks are completed. The makespan can be considered as
the length of time the user sends the job until it completes
the work and is the results generated.

(2) Budget: This is equal to the financial constraint on
the use of resources. To run the total workflow can be
used several VM from different types. The total cost of
execution is equal to the sum of all types of VMs used in
the implementation, which should be less than the user-de-
fined budget.

(3) Deadline: Critical applications need to be com-
pleted within a certain time period. Scheduling is defined
under the time limitation for the applications to be com-
pleted before the deadline.

(4) Security: In distributed computing such as Fog, re-
sources are varied and vast, so maintaining security is an
important issue. Data protection and privacy in the haze
environment are more complex than traditional systems
because of the nature of the distribution.

(5) Cost: This parameter includes computing costs, data
transmission costs, and storage costs [32].

Service Provider:

(1) Load balancing: VMs are the most important re-
source in the computing environment. On scheduling, you
can assign more than one task to a VM to run tasks simul-
taneously, which results in load imbalances on VMs. Load
balancing between resources improves resource efficiency
and thus improves the overall performance of the scheduling
process.

(2) Consuming resources: Increasing the use of resourc-
es for a helpful service provider.

To obtain the maximum benefit is allocated limited re-
sources to the user, are fully used resources.

(3) Energy efficiency: The use of processors and the
use of resources directly affects the energy consumed by
a task. When the processor is not used properly, the energy
consumption will be high because is not effectively used the
idle time [32].

2.3 Traditional Methods

The authors in [33] devised a dynamic programming (DP)
method for allocating resources to runtime constrained in-
put tasks. In this way, each provider offers several different
VMs and global services for data sharing. One of the meth-
ods of resource allocation is the fastest time-out algorithm
that has increased cost. In [34], researchers analyzed the
Multi-Objective Optimization (MOO) method for business
infrastructure services. They used the Pareto Front as a de-

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

29

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

cision-making method for trading optimal solutions. They
cut the cost of the timetable by half, but increased the rate
by 5%. In another paper, resource allocation is performed
considering the fault tolerance according to the proposed
method for point-and-time VMs for executing user re-
quests. Prices have started roughly and increased during
execution to get closer to user demand. The results show
that due to the use of spot VM [35] the scheduling perfor-
mance is low. n [36], a method of allocating resources based
on hardware defects in instant time is presented. This meth-
od has three steps in term of elastic resource provisioning
in the clouds. First, backward shifting of overlapping
tasks with VM migration. Second, increasing the resource
scale to increase the capability of VM operations or builds
due to synchronization with subsequent input work. Third,
shrinking of the processing capacity of an idle VM. The
results of this work caused to optimized resource utiliza-
tion than other baseline algorithms.

In [37], the authors investigated QoS parameters using
three resource allocation algorithms in the Fog architec-
ture, namely: concurrent priority, first-input-first-output,
and delay priority. In the concurrent method, input tasks
are assigned to them regardless of the capacity of the
resources. In the first-input-first-output method, tasks
are executed the same way they were entered. If the data
center is unable to execute the request, then the task is
queued. In priority delay-based methods, the input tasks are
executed based on the least time delay. The paper uses the
iFogsim simulator [1] with two applications of brain signal
tracking and object tracking in video images. The results
show that the concurrent method has more delay than the
first-input-first-output and delay priority method. In tracking
brain signals, the number of modules per device for the si-
multaneous method is greater than the other two. The num-
ber of modules in the cloud for the first-in-first-out method
was higher than the other two.

2.4 Heuristic Methods

In heuristic algorithms, the answers are obtained by a
number of rules. In the classical type of these algorithms,
there are methods such as first, best and worst fit. Major
resource allocation [28] issues in Fog can be solved by such
methods. In [38], the input tasks are programmed by a heu-
ristic algorithm, which aims to reduce the cost of execut-
ing the tasks. Performance and cost improved, according
to the results. In [39], parallel tasks were implemented by
instantaneous execution on a network of different sourc-
es by a heuristic. Researchers selected the frequency of
sources using nonlinear programming (NLP).

In [40], a knapsack-based scheduler for parallel transmis-
sion of video content is presented. The researchers imple-

mented the max-min method on high-powered computers
for mapping tasks in a number of sectors. The analysis of the
results proves that their proposed method has improved at
runtime and number of segments. Researchers in [41] solved
the task scheduling problem in fog-based IoT applications
by knapsack. They optimized knapsack by symbiotic or-
ganism search. The results revealed superiority than other
methods. In another study [42], a backpack algorithm with
dynamic programming was used to solve the resource allo-
cation problem with the aim of reducing runtime and cost.
Their major achievements have been the use of low-capaci-
ty resources and effective quantities for time-lapse parame-
ters, network congestion, and precise job size.

The general process of heuristic algorithms is shown in
Figure3a. The flowchart of population-based algorithms is
similar to Figure 3b, with the difference that instead of a
solution, is created a set of solution. Hyper-heuristic al-
gorithms (Figure 3c) are the exploratory search method in
which automation, often combined with the techniques of
machine learning, is the process of selecting, combining,
producing or modifying several simple heuristics for solv-
ing computational problems.

(a) Heuristic Algorithm -

(b) Meta-Heuristic Algorithm

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

30

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

(c) Hyper-Heuristic Algorithm

Figure 3. Flowchart of approximate algorithms

2.5 Meta-heuristic Methods

One of the extra-heuristic algorithms to solve the resource
allocation problem is the PSO optimization method present-
ed in [11]. One of the features of this method is the provision
of elastic and different sources with infinite resources as
well as changing VM operation. One of the problems with
this approach is the computational overhead for resource
providers, which increased by the number of VMs and tasks
[11]. A hybrid algorithm involving PSO and cats’ optimization
for resource allocation and VM management in the cloud
has reduced the average response time, also it has increased
resource utilization by up to 12% in compared with other
benchmark algorithms [43]. ACO-based scheduling ACO has
been used as another evolutionary algorithm for scheduling
and resource allocation in the cloud, which has been more
effective in the loading of resources and reducing of request
failures. It used the fitness function based on trusted values
and deadlines. As results, ACO minimized the throughput
and the number of request failure and maximized the com-
putation power [10]. The different scheduling problem solved
in [44] by knapsack and optimized by ant colony optimization
(ACO). In [45], resource allocation in the cloud is solved by
the KnapGA genetic backpack algorithm. Its graceful func-
tion includes CPU utilization, network power, disk input, and
output times. The researchers were able to reduce the energy
consumption and migration of VMs.

Another meta-heuristic approach presented in [46] is
the Bee-Based Algorithm for allocating resources to
tasks in the fog network. Their algorithm as BLA is based
on the optimized distribution of tasks in the fog nodes. The
researchers using BLA find an optimal tradeoff between
runtime and memory allocation for mobile users. The re-
sults show that runtime and memory allocation values by

BLA are lower than GA and PSO algorithms.
The authors in [47] studied the resource allocation

based on the meta-heuristic methods in the clouds. Each
algorithm has some advantages and disadvantages. Sched-
uling solutions have issues like resource scaling, failure
handling, security and storage-aware, dependent tasks,
data transfer cost, dynamic resource provisioning for
the IoT. In [48], resources are allocated to tasks in FC by
NSGA-II method. This work simulated in MATLAB.
They only compare their method with random allocation
method. Their scheduling method reduced the latency and
improve the stability of the task execution.

Studies show that much has been done in the field of
cloud computing in the Cloudim simulator [49]. Of course,
a number of FC-related work has been done on Cloud-
im or different programming frameworks. iFogsim, as
successful development of Cloudsim, is very applicable
to FC scheduling and resource management algorithms.
The analysis of the heuristic algorithms proves that these
methods have a long runtime and are not suitable for de-
lay-sensitive scheduling problems.

We compare the mentioned scheduling methods by the
problem, algorithm, objectives, framework, and environ-
ment in Table 1. The problems are categorized by task/job
scheduling and resource provisioning.

Table 1. Summary of scheduling algorithms

Algorithm Problem Objectives Framework Environ-
ment

Knapsack [40] Task scheduling Complete time Cloud Matlab

Knapsack [42] Task scheduling Deadline and
cost Cloud Cloudsim

KnapGA [45] Task scheduling
I/O rate, migra-
tion count, and
host occupation

Cloud Simula-
tion

ACO [10] Task scheduling Trust value and
deadline Cloud Simula-

tion

PSO [11] Resource provi-
sioning

Deadline and
cost Cloud Simula-

tion

DP [33] Task scheduling Deadline and
cost Cloud Fabric

compiler

MOO [34] Task scheduling
Earliest finish
time and com-
pletion time

Cloud Real

Bidding strat-
egy [35] Task scheduling Deadline, cost,

and reliability Cloud Cloudsim

Backward
shifting [36]

Resource provi-
sioning

Host failure and
task starting

time
Cloud Cloudsim

PSO [43] Task Schedul-
ing

Utilization
of VMs and

Response time
Cloud Python

ACO [44] Task scheduling Start time Smart Grid Matlab

Heuristic [38] Task scheduling Makespan and
execution cost Cloud-Fog Cloudsim

NSGA-II [48] Resource
scheduling

latency and
stability Fog Matlab

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

31

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

Mobility
aware [37] Task scheduling Costs and QOS Fog iFogsim

NLP [39] Task scheduling
Energy of

thread execu-
tion

Fog Simula-
tion

BLA [46] Job scheduling
Run time and

memory alloca-
tion

Fog BLA with
C++

HHS [26] Task scheduling Security, CPU,
and bandwidth Fog iFogsim

GKS [27] Task scheduling Cost and Ener-
gy Fog iFogsim

KnapSOS [41] Task scheduling CPU and band-
width Fog iFogsim

3. Mobile Computing

The executing computation tasks of mobile applications
on MDs requires a lot of resources, so they can offload to
the Cloud. But Cloud is far from MDs and has challenges
as high delay and power consumption. In general, mobile
computing falls into the following three categories.

(1) MCC: Some processes on mobile devices require
robust resources so they must be sent to the cloud data
center. If a large number of users are logged in with de-
lay-sensitive applications and want to cloud the data, then
there is the problem of bandwidth [50, 2].

(2) MEC: In this type, tasks are performed near the
mobile device [51]. Mobile edge computing reduces net-
work congestion and performs tasks more efficiently [2].

(3) MFC: Since the cloud is far away from mobile de-
vices [52], it is possible to send delay-sensitive tasks to the
fog layer. As a result, it will save time and energy [53].

MFC can speed up the transfer of tasks to data centers

[54]. This inexpensive and low-latency network architec-
ture can be used as an infrastructure for the IoT.

4. Offloading

The issue of offloading in mobile computing has become
an attractive topic for study and research in recent years.
This issue has optimization goals that are outlined be-
low. The objectives of offloading and scheduling in the
reviewed articles are as shown in Figure 4.

Figure 4. The offloading and scheduling objectives

4.1 MCC-based Offloading

Researchers in [55] addressed the problem of offloading and
allocation of resources at MCC with the aim of reducing
energy consumption. This has limitations such as response
time, execution time and cost. The problem-solving meth-
od has been a greedy algorithm that has been able to op-
timize the target criteria. In [56], the authors developed an
optimal pricing model (OPS) by examining the behavior
of mobile users. This has led to a compromise between
energy consumption and time delays.

The authors in [57] calculated the waiting time of cloud
data centers and presented an offloading algorithm as
HCOA based on the PSO. In [58], the ant colony-based
offloading method as CMSACO is presented. The objec-
tives of this method are profit, deadline, task dependency,
resource differences, and load balancing. The analysis
of results proves that total profits, time spent completing
tasks, and network resource consumption have improved.

4.2 MEC-based Offloading

Various algorithms for resource allocation and offloading
have been proposed in the MEC [59,60]. The authors ad-
dressed this in [60] and were able to reduce the cost of mo-
bile devices by proving the Nash equilibrium.

In [61], the authors propose a functional architecture for
different methods of offloading on mobile and IoT de-
vices. In [62], the problem of offloading and allocating re-
sources solved by the maximum greedy algorithm called
by DGMS. They first introduced the policy of collecting
energy for wireless devices from the environment. Then
Lyaponuv optimization method for loading is presented.
The results show the superiority of the proposed method
over-centralized and random planning methods.

4.3 MFC-based Offloading (Module Placement)

In [63], the problem of offloading mobile device codes in
MFC is solved. The researchers compared their approach
to VM-based methods and container models. The pro-
posed model performs better than others in the criteria of
time delay, memory consumption, and image size and en-
ergy consumption. Another method of solving the offload-
ing problem in FC is queue theory [53]. The authors pro-
posed a multi-objective optimization method (MOIPM).
They were able to improve energy consumption, delay in
execution and cost.

In [64], the load of informed social calculation is pro-
vided for MFC. The proposed method is based on differ-
ent queue models and energy collection models. Their
algorithm has been able to reduce the running cost by
solving the Nash generalized equilibrium problem. In [65],

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

32

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

researchers provided a task offloading method in MFC
by classification and regression tree. They could optimize
their method by Markov chain process.

The offloading algorithm presented in [66] is based on
machine learning. The proposed method reduces the space
of the answers by applying the Markov process and deep
reinforcement learning. This method, called DQLCM, has
been able to minimize latency.

4.4 MCC/MEC/MFC-based Offloading

Many studies have been presented in integrated architec-
tures [67, 68]. The researchers [68] presented an integrated ar-
chitecture of the cloud, edge, and IoT that reduced energy
consumption. In [69], the offloading and scheduling prob-
lem is solved using the complex nonlinear programming
method (integer). The researchers were able to reduce the
most weight-related to cost, energy consumption and time
delay criteria. In [70], the problem of offloading application
code in hybrid cloud, edge and fog architecture is provid-
ed. The proposed method, SIMD, improves energy con-
sumption, time, and the number of executable instructions
as well as the migration overhead.

The mentioned offloading algorithms are summarized
in Table 2. The problems are categorized by task and code
offloading.

Table 2. Summary of offloading algorithms

Algorithm Problem Objectives Framework Environment

GABTS [55]
Task off-

loading and
scheduling

Energy,
response time,
deadline, and

cost

MCC C++

OPS [56]
Task off-

loading and
scheduling

Energy and
delay MCC ThinkAir

HCOA [57]
Task off-

loading and
scheduling

Energy MCC Simulation

CMSACO [58] Multi-Task
offloading

Profit and
completion

time
MCC Simulation

W5 [61] Task offload-
ing

g CPU,
memory, and

network usage
MEC/MCC Real

JCORAO [60]
Task off-

loading and
scheduling

Deadline and
cost MEC Hetnet sim-

ulation

DGMS [62] Multi-Task
offloading

Energy, bat-
tery, and CPU

frequency
MEC Simulation

Unikernel [63] Code Offload-
ing

Boot time,
memory, and

energy
MFC An-

droid-x86

MOIPM [53] Task offload-
ing

Energy, delay,
and cost MFC Simulation

MPMCP [65] Task offload-
ing

Power, QoS,
and security MFC Cloudsim

GNEP [64] Task offload-
ing Cost MFC Simulation

DQLCM [66] Task offload-
ing

Delay and
Energy MFC Real

MINP [69]
Task off-

loading and
scheduling

Delay, Energy,
and Cost MFC/MCC Matlab

SIMD [70] Code Offload-
ing

Energy, execu-
tion time, and

MFLOPS

FC/MEC/
MCC Real

5. Conclusion and Suggestion

In this paper, we survey recent researches of computation
offloading and scheduling in Cloud, edge, and FC. Chal-
lenges include time delay, energy, cost, trust, QoS, stabili-
ty, memory, and security. Our categorizations are based on
the issue, proposed strategy, objectives, framework, and
test environment of various works. Moreover, based on the
analysis, we propose machine learning algorithms to make
smart distributed computing environments. We propose
the machine learning methods to intelligent task schedul-
ing and offloading in distributed computing. To simulate
Cloud and FC applications, the Cloudsim and iFogsim
libraries are closer to the real environment.

Studies show that fog computing has been more effec-
tive than cloud computing in implementing IoT sched-
uling and resource management algorithms. Things like
power consumption, time delays, and optimizing server
shutdown times are much easier in fog computing than
cloud computing. Heavy processing is done instead of
moving to cloud data centers in fog devices near the end
users' location. Based on this study, the following can be
suggested for future research:

(1) Applying Machine Learning Techniques: Extensive
methods of artificial intelligence and machine learning
can be very useful in various applications of IoT. Artificial
intelligence methods have shown to be highly effective in
a variety of issues. In the scheduling problem, applying
these algorithms will help the system learn more and pro-
vide better solutions. By focusing on new classifications
and adjusting the parameters of these algorithms accord-
ing to the workflows and resources, it is possible to strive
for better performance of the scheduling algorithms.

(2) Applications: One of the case studies could be the
definition of new application models in IoT with different
computations in fog computing. These include medical
care, smart home, smart city, transportation system, car
park, instant video analysis, traffic lights management,
computer games, big data analytics, energy industry, wa-
ter, and soil management.

(3) Objective Criteria: Many parameters can be inves-
tigated, some of which are: time (start, end, completion,

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

33

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

wait, delay, and deadline), energy consumption, renewable
energy, bandwidth, network resource consumption, effi-
ciency, entry rate tasks, accuracy, cost, quality of service,
location awareness, mobility, and inter-network connec-
tivity.

(4) Security services: Considering more services in the
security overhead model in addition to the three authen-
tication, confidentiality and integration services as well
as analyzing these issues in managing and allocating re-
sources to input tasks can be introduced as another area of
research.

(5) Scheduling Challenges in the IoT: Research on top-
ics such as load balancing, load prediction, reliability and
fault tolerance in offloading, resource provisioning, soft-
ware-defined networking, network function virtualization
and scheduling with fog architecture are considered to be
very suitable developments that are at the beginning of the
road today and very They have research. The following is
a brief explanation of each:

A. Load balancing in fog computing is related to the
placement of modules in the appropriate fog device, which
requires the development of new methods and models.

B. Forecasting on the IoT can be a very useful topic.
Since in dynamic systems, the rate of entry of tasks into
the system varies, so it is very difficult to predict. On the
other hand, its prediction can be considered as a pre-pro-
cessing operation in scheduling and resource allocation
operations and can improve it. Artificial intelligence
methods work very well in this regard. For example, neu-
ral network-based approaches such as deep learning and
reinforcement can be effective.

C. Trust in fog computing or IoT can be followed by
block chain technology because there is no centralized
server in distributed systems and so it is very close to
the architecture of the hub. On trust, the goal is that new
modules, before moving on to the new haze tool, ask their
neighbors to trust the haze tool, which can be the subject
of much research with mathematical modeling and intelli-
gent algorithms.

D. Fault tolerance is also one of the most commonly
used fields in fog computing. There are various methods
in this area that examine the error and the solution to re-
duce or reduce it before and after it occurs.

E. Resource provisioning is one of the special challeng-
es in fog computing that differs with resource allocation.
Here are some ways to create or restore resources in the
system.

F. Software-defined networks can be explored in fog
computing. In this regard, the control section of the net-
work is separated from its forwarding section, and the
expressions in the network (such as router and switch) be-

come ineffective decision-making tools and only perform
tasks based on the flow tables that the controller commu-
nicates to them. Therefore, the programming algorithms
of this section are very useful.

G. Network function virtualization is able to implement
network elements as software components. Each of these
components was traditionally implemented as a separate
hardware device. For example, in a network, firewall,
router, and load balancing tools have been the norm. Ob-
viously, having separate devices for each application is
very costly and has many management complexities. In
fog architecture, setting up such sections in virtual terms
is very useful and new.

(6) New architectures: Investigating new architectures
such as cloud computing increases productivity and re-
duces time delays in IoT applications and can therefore
extend the boundaries of knowledge. These include the
dew architecture or network slicing. Given the growing
number of network tools, this can be of interest to network
architecture professionals.

(7) Development of new software frameworks: Due to
the high cost of network tools and the large geographical
location needed to test the methods, researchers can de-
velop new simulation environments in fog architecture.
Special frameworks can be designed for specific applica-
tions that are close to the IoT.

References

[1] Gupta, H. Vahid Dastjerdi, A. Ghosh, S. K. Buyya,
R. ifogsim: A toolkit for modeling and simulation of
resource management techniques in the internet of
things, edge and fog computing environments, Soft-
ware: Practice and Experience, 2017, 47(9): 1275-
1296.

[2] Gusev, M. Dustdar, S. Going back to the roots-the
evolution of edge computing, an iot perspective,
IEEE Internet Computing, 2018, 22(2): 5-15.

[3] Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin,
X. A survey of communication protocols for internet
of things and related challenges of fog and cloud
computing integration. ACM Computing Surveys
(CSUR), 2019, 51(6): 116.

[4] Gill, S. S., Chana, I., Singh, M., Buyya, R. RADAR:
Self-configuring and self-healing in resource man-
agement for enhancing quality of cloud services.
Concur rency and Computation: Practice and Experi-
ence, 2019, 31(1): e4834.

[5] Aazam, M. St-Hilaire, M. Lung, C. H. Lambadaris,
I. Pre-fog: Iot trace based probabilistic resource es-
timation at fog, in: Consumer Communications and
Networking Conference (CCNC), 2016 13th IEEE

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

34

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

Annual, Las Vegas, NV, USA, 9-12, IEEE, 2016: 12-
17.

[6] Mahmud, R. Kotagiri, R. Buyya, R. Fog computing:
A taxonomy, survey and future directions, in: Internet
of Everything, Springer, 2018: 103-130.

[7] Rahmani, A. M. Gia, T. N. Negash, B. Anzanpour,
A. Azimi, I. Jiang, M. Liljeberg, P. Exploiting smart
e-health gateways at the edge of healthcare inter-
net-of-things: a fog computing approach, Future
Generation Computer Systems, 2017: 641-658.

[8] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K.,
Jalali, F., Niakanlahiji, A., Jue, J. P. All one needs to
know about fog computing and related edge comput-
ing paradigms: A complete survey. Journal of Sys-
tems Architecture, 2019.

[9] Satyanarayanan, M. Bah, P. Caceres, R. Davies, N.
The case for vm-based cloudlets in mobile comput-
ing, IEEE pervasive Computing, 2009, 8(4): 14-23.

[10] Gupta, P. Ghrera, S. P. Trust and deadline aware
scheduling algorithm for cloud infrastructure using
ant colony optimization, in: Innovation and Chal-
lenges in Cyber Security (ICICCS-INBUSH), In-
ternational Conference on, Noida, India, 3-5. IEEE,
2016: 187-191.

[11] Rodriguez, M. A. Buyya, R. Deadline based resource
provisioning and scheduling algorithm for scientific
workflows on clouds, IEEE Transactions on Cloud
Computing, 2014, 2(2): 222-235.

[12] Yakubu, J., Christopher, H. A., Chiroma, H., Abdul-
lahi, M. Security challenges in fog-computing envi-
ronment: a systematic appraisal of current develop-
ments.Journal of Reliable Intelligent Environments,
2019: 1-25.

[13] Wang, T., Liang, Y., Jia, W., Arif, M., Liu, A., Xie, M.
Coupling resource management based on fog com-
puting in smart city systems. Journal of Network and
Computer Applications, 2019, 135: 11-19.

[14] Chen, N. Chen, Y. Smart city surveillance at the net-
work edge in the era of iot: Opportunities and chal-
lenges, in Smart Cities, , 2018: 153-176.

[15] Hosseinian-Far, A. Ramachandran, M. Slack, C. L.
Emerging trends in cloud computing, big data, fog
computing, iot and smart living, in Technology for
Smart Futures, Springer, 2018: 29-40.

[16] Umang, N., Bierlaire, M., & Erera, A. L. Real-time
management of berth allocation with stochastic arriv-
al and handling times. Journal of Scheduling, 2017,
20(1): 67-83.

[17] Zhen, L., Liang, Z., Zhuge, D., Lee, L. H., & Chew,
E. P. Daily berth planning in a tidal port with channel
flow control. Transportation Research Part B: Meth-
odological, 2017, 106: 193-217.

[18] Dulebenets, M. A. A comprehensive multi-objective
optimization model for the vessel scheduling prob-
lem in liner shipping. International Journal of Pro-
duction Economics, 2018, 196: 293-318. .

[19] Xiang, X., Liu, C., & Miao, L. Reactive strategy for
discrete berth allocation and quay crane assignment
problems under uncertainty. Computers & Industrial
Engineering, 2018, 126: 196-216.

[20] Dulebenets, M.A. A Delayed Start Parallel Evolu-
tionary Algorithm for Just-in-Time Truck Scheduling
at a Cross-Docking Facility. International Journal of
Production Economics. 2019, 212: 236-258.

[21] Dulebenets, M.A. A Comprehensive Evaluation
of Weak and Strong Mutation Mechanisms in
Evolutionary Algorithms for Truck Scheduling at
Cross-Docking Terminals. IEEE Access. 2018, 6:
65635-65650.

[22] Serrano, C.; Delorme, X.; Dolgui, A. Scheduling
of truck arrivals, truck departures and shop-floor
operation in a cross-dock platform, based on trucks
loading plans. International Journal of Production
Economics. 2017, 194: 102–112.

[23] Khalili-Damghani, K.; Tavana, M.; Santos-Arteaga,
F.J.; Ghanbarzad-Dashti, M. A. A customized genetic
algorithm for solving multi-period cross-dock truck
scheduling problems. Measurement. 2017, 108: 101–
118.

[24] Ertem, M., Ozcelik, F., & Saraç, T. Single machine
scheduling problem with stochastic sequence-depen-
dent setup times. International Journal of Production
Research, 2019, 1-17.

[25] Dong, C.; Li, Q.; Shen, B.; Tong, X. Sustainability
in Supply Chains with Behavioral Concerns. Sustain-
ability, 2019, 11: 4071.

[26] Rahbari, D., Kabirzadeh, S., and Nickray, M.. A se-
curity aware scheduling in fog computing by hyper
heuristic algorithm. In Intelligent Systems and Signal
Processing (ICSPIS), 2017 3rd Iranian Conference
on. IEEE, 87-92.

[27] Rahbari, D., Nickray, M. Low-latency and ener-
gy-efficient scheduling in fog-based IoT applications.
Turkish Journal of Electrical Engineering & Comput-
er Sciences, 2019, 27(2): 1406-1427.

[28] Rodriguez, M. A. Buyya, R. A taxonomy and survey
on scheduling algorithms for scientific workflows in
iaas cloud computing environments, Concurrency
and Computation: Practice and Experience, 2017, 29
(8): 1-23.

[29] Raidl, G. R., Puchinger, J., Blum, C. Metaheuristic
Hybrids. In Handbook of Metaheuristics. Springer,
Cham, 2019: 385-417.

[30] Frincu, M. E. Genaud, S. Gossa, J. Comparing pro-

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

35

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

visioning and scheduling strategies for workflows on
clouds, in: Parallel and Distributed Processing Sym-
posium Workshops and PhD Forum (IPDPSW), 2013
IEEE 27th International, Cambridge, MA, USA, 20-
24 May, IEEE, 2013, pp. 2101-2110.

[31] Singh, S., & Chana, I. A survey on resource schedul-
ing in cloud computing: Issues and challenges. Jour-
nal of grid computing, 2016, 14(2): 217-264.

[32] Singh, P., Dutta, M., & Aggarwal, N. A review of
task scheduling based on meta-heuristics approach in
cloud computing. Knowledge and Information Sys-
tems, 2017, 52(1): 1-51.

[33] Malawski, M. Figiela, K. Bubak, M. Deelman, E.
Nabrzyski, J. Scheduling multi-level deadline-con-
strained scientific workflows on clouds based on cost
optimization, Scientific Programming 2015, 5-5.

[34] Durillo, J. J., Prodan, R. Multi-objective workflow
scheduling in amazon ec2, Cluster computing, 2014,
17 (2): 169-189.

[35] Poola, D., Ramamohanarao, K., Buyya, R. Fault-tol-
erant workflow scheduling using spot instances on
clouds, Procedia Computer Science, 2014, 29: 523-
533.

[36] Zhu, X., Wang, J., Guo, H., Zhu, D., Yang, L. T.,
Liu, L. Fault-tolerant scheduling for real-time scien-
tific workflows with elastic resource provisioning in
virtualized clouds, IEEE Transactions on Parallel and
Distributed Systems, 2016, 27 (12): 3501-3517.

[37] Bittencourt, L. F., Diaz-Montes, J., Buyya, R.,
Rana, O. F., Parashar, M. Mobility-aware application
scheduling in fog computing, IEEE Cloud Comput-
ing, 2017, 4(2): 26-35.

[38] Pham, X. Q., Huh, E. N. Towards task scheduling
in a cloud-fog computing system, in: Network Op-
erations and Management Symposium (APNOMS),
2016 18th AsiaPacific, Kanazawa, Japan, 5-7, IEEE,
2016: 1-4.

[39] Zahaf, H. E., Benyamina, A. E. H., Olejnik, R., Li-
pari, G. Energy-efficient scheduling for moldable re-
al-time tasks on heterogeneous computing platforms,
Journal of Systems Architecture, 2017, 74: 46-60.

[40] Lao, F. Zhang, X. Guo, Z. Parallelizing video
transcoding using map-reduce-based cloud comput-
ing, in: Circuits and Systems (ISCAS), 2012 IEEE
International Symposium on, Seoul, South Korea,
20-23 May, IEEE, 2012: 2905-2908.

[41] Rahbari, D., Nickray, M. Scheduling of fog networks
with optimized knapsack by symbiotic organisms
search. In 2017 21st Conference of Open Innovations
Association (FRUCT). IEEE, 2017: 278-283.

[42] Rodriguez, M. A. Buyya, R. A responsive knap-
sack-based algorithm for resource provisioning and

scheduling of scientific workflows in clouds, in:
Parallel Processing (ICPP), 2015 44th International
Conference on, Beijing, China, 1-4, IEEE, 2015:
839-848.

[43] Guddeti, R.M., Buyya, R., et al. A hybrid bio-in-
spired algorithm for scheduling and resource man-
agement in cloud environment’, IEEE Transactions
on Services Computing, 2017.

[44] Rahim, S., Khan, S. A., Javaid, N., Shaheen, N.,
Iqbal, Z., Rehman, G. Towards multiple knapsack
problem approach for home energy management in
smart grid, in: Network-Based Information Systems
(NBiS), 2015 18th International Conference on, Tai-
pei, Taiwan, 2-4, IEEE, 2015: 48-52.

[45] Chen, S. Wu, J. Lu, Z. A cloud computing resource
scheduling policy based on genetic algorithm with
multiple fitness, in: Computer and Information Tech-
nology (CIT), 2012 IEEE 12th International Confer-
ence on, Chengdu, China, 27-29, IEEE, 2012: 177-
184.

[46] Bitam, S. Zeadally, S. Mellouk, A. Fog computing
job scheduling optimization based on bee’s swarm,
Enterprise Information Systems 0, 2017: 1-25.

[47] Sheff, I., Magrino, T., Liu, J., Myers, A. C., van
Renesse, R. Safe serializable secure scheduling:
Transactions and the trade-off between security and
consistency, in: Proceedings of the 2016 ACM SIG-
SAC Conference on Computer and Communications
Security, Vienna, Austria, 24-28, ACM, 2016: 229-
241.

[48] Sun, Y. Lin, F. Xu, H. Multi-objective optimization
of resource scheduling in fog computing using an im-
proved nsga-ii, Wireless Personal Communications,
2018: 1-17.

[49] Calheiros, R. N., Ranjan, R., Beloglazov, A., De
Rose, C. A., Buyya, R. Cloudsim: a toolkit for
modeling and simulation of cloud computing envi-
ronments and evalu-ation of resource provisioning
algorithms, Software: Practice and experience, 2011,
41 (1): 23-50.

[50] Fernando, N. Loke, S. W. Rahayu, W. Mobile cloud
computing: A survey, Future generation computer
systems, , 2013, 29(1): 84-106.

[51] Mach, P. Becvar, Z. Mobile edge computing: A
survey on architecture and computation offloading,
IEEE Communications Surveys & Tutorials, 2017,
19(3): 1628-1656.

[52] Li, C., Xue, Y., Wang, J., Zhang, W., Li, T. Edge-ori-
ented computing paradigms: A survey on architecture
design and system management, ACM Computing
Surveys (CSUR), 2018, 51(2): 39.

[53] Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

36

Journal of Electronic & Information Systems | Volume 01 | Issue 01 | April 2019

Distributed under creative commons license 4.0

Multiobjective optimization for computation offload-
ing in fog computing, IEEE Internet of Things Jour-
nal, 2018, 5(1): 283-294.

[54] Roman, R., Lopez, J., Mambo, M. Mobile edge
computing, fog et al.: A survey and analysis of
threats and challenges, Future Generation Computer
Systems, 2018, 78: 680-698.

[55] Tang, C., Wei, X., Xiao, S., Chen, W., Fang, W.,
Zhang, W., Hao, M. A mobile cloud-based schedul-
ing strategy for industrial internet of things, IEEE
Access, 2018, 6: 7262-7275.

[56] Shah-Mansouri, H., Wong, V. W., Schober, R. Joint
optimal pricing and task scheduling in mobile cloud
computing systems, IEEE Transactions on Wireless
Communications, 2017, 16(8): 5218-5232.

[57] Zhang, J., Zhou, Z., Li, S., Gan, L., Zhang, X., Qi, L.,
Xu, X. Dou, W. Hybrid computation offloading for
smart home automation in mobile cloud computing,
Personal and Ubiquitous Computing, 2018, 22(1):
121-134.

[58] Wang, T., Wei, X., Tang, C., Fan, J. Efficient multi-
tasks scheduling algorithm in mobile cloud comput-
ing with time constraints’, Peer-to-Peer Networking
and Applications, 2017, 11(4): 793-807.

[59] Wang, Z., Zhao, Z., Min, G., Huang, X., Ni, Q.,
Wang, R. User mobility aware task assignment for
mobile edge computing, Future Generation Comput-
er Systems, 2018, 85: 1-8.

[60] Zhang, J., Xia, W., Yan, F., Shen, L. Joint computa-
tion offloading and resource allocation optimization
in heterogeneous networks with mobile edge com-
puting, IEEE Access, 2018, 6: 19324-19337.

[61] Elazhary, H. H., Sabbeh, S. F. The w5 framework
for computation offloading in the internet of things,
IEEE Access, 2018.

[62] Chen, W., Wang, D. Li, K. Multi-user multi-task

computation offloading in green mobile edge cloud
computing, IEEE Transactions on Services Comput-
ing, 2018.

[63] Wu, S., Mei, C., Jin, H. Wang, D. Android unikernel:
Gearing mobile code offloading towards edge com-
puting, Future Generation Computer Systems, 2018.

[64] Liu, L. Chang, Z. Guo, X. Socially-aware dynamic
computation offloading scheme for fog computing
system with energy harvesting devices, IEEE Internet
of Things Journal, 2018.

[65] Rahbari, D., Nickray, M. Task offloading in mobile
fog computing by classification and regression tree.
Peer-to-Peer Networking and Applications, 2019,
1-19.

[66] Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.
Migration modeling and learning algorithms for
containers in fog computing, IEEE Transactions on
Services Computing, 2018.

[67] Mohan, N. Kangasharju, J. Placing it right! opti-
mizing energy, processing, and transport in edge-fog
clouds, Annals of Telecommunications, 2018: 1-12.

[68] Lyu, X., Tian, H., Jiang, L., Vinel, A., Maharjan,
S., Gjessing, S., Zhang, Y.Selective offloading in
mobile edge computing for the green internet of
things, IEEE Network, 2018, 32(1): 54-60.

[69] Du, J., Zhao, L., Feng, J., Chu, X. Computation off-
loading and resource allocation in mixed fog/cloud
computing systems with min-max fairness guarantee,
IEEE Transactions on Communications, 2017.

[70] Shuja, J., Gani, A., Ko, K., So, K., Mustafa, S.,
Madani, S.A. Khan, M.K. Sim-dom: A framework
for simd instruction translation and offloading in
heterogeneous mobile architectures, Transactions on
Emerging Telecommunications Technologies, 2018,
29(4): e3174.

DOI: https://doi.org/10.30564/jeisr.v1i1.1135

	OLE_LINK8
	OLE_LINK1
	OLE_LINK11
	OLE_LINK14
	OLE_LINK15
	OLE_LINK16
	OLE_LINK18
	OLE_LINK19
	OLE_LINK20
	OLE_LINK23
	OLE_LINK3
	OLE_LINK25
	OLE_LINK26
	_GoBack
	Pg2
	Pg5
	Pg6
	OLE_LINK1
	Pg9
	Pg13
	_GoBack
	Pg14
	Pg15
	Pg16
	Pg17
	OLE_LINK19
	OLE_LINK20
	_Hlk8336707
	_Hlk8337342
	_Hlk8337448
	_Hlk8337580
	_Hlk8338231
	_Hlk8337553
	_Hlk6136235
	OLE_LINK4
	OLE_LINK2
	OLE_LINK3
	_GoBack

