
1

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jeisr.v2i2.2090

Journal of Electronic & Information Systems
https://ojs.bilpublishing.com/index.php/jeis

ARTICLE
On Detecting and Enforcing the Non-Relational Constraints
Associated to Dyadic Relations in MatBase

Christian Mancas*
Mathematics and Computer Science Dept., Ovidius University, Constanta, Romania

ARTICLE INFO ABSTRACT

Article history
Received: 19 June 2020
Accepted: 28 August 2020
Published Online: 31 October 2020

MatBase is a prototype data and knowledge base management expert
intelligent system based on the Relational, Entity-Relationship, and
(Elementary) Mathematical Data Models. Dyadic relationships are quite
common in data modeling. Besides their relational-type constraints, they
often exhibit mathematical properties that are not covered by the Relational
Data Model. This paper presents and discusses the MatBase algorithm
that assists database designers in discovering all non-relational constraints
associated to them, as well as its algorithm for enforcing them, thus
providing a significantly higher degree of data quality.

Keywords:
Conceptual data modeling
Database constraints theory
Non-relational constraints
Data structures and algorithms for data
management
Dyadic relation properties
Data quality
(Elementary) Mathematical Data Model
MatBase

1. Introduction

MatBase [10-13] is a prototype data and knowledge
base management expert intelligent system
based on the Relational (RDM) [1,3,6], the

Entity-Relationship (E-RDM) [2,6,18], and the (Elementary)
Mathematical ((E)MDM) [10,13] Data Models, as well as
on Datalog [1,13], already successfully used for years by a
couple of software developing companies, as well as in
our University Database lectures and labs. Currently, there
are two implementations of MatBase: one mainly for
University labs developed in MS Access and one mainly

for the IT industry developed in C# and MS SQL Server.
Any (conventional) database (db) scheme is a triple <S,

M, C>, where S is a non-void finite collection of sets, M
a finite non-void set of mappings defined on and taking
values from sets in S, and C a similar one of constraints
(i.e. closed first-order predicate calculus with equality
formulas [17]) over the sets in S and mappings in M. Sets
and mappings constitute the structure of dbs, while
constraints, which are formalizing business rules, are
meant to allow storing only plausible data into them.

In RDM, the sets of S are tables and views, the
mappings of M are their columns, and the constraints of C

*Corresponding Author:
Christian Mancas,
Mathematics and Computer Science Dept., Ovidius University, Constanta, Romania;
Email: christian.mancas@gmail.com

2

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jeisr.v2i2.2090

are incorporated in the table schemes. Unfortunately, both
RDM and E-RDM have only a handful of constraint types,
which are not at all enough to guarantee data plausibility.
Most of the RDM Management Systems (RDBMS)
provide only 6 types of (relational) constraints, namely:
domain (range), not-null, default value, key (uniqueness),
foreign key (referential integrity), and check (tuple).

For example, using only these 6 types of constraints,
even a very simple table (storing automatically generated
id numbers in column P_Id, First and Last Names, Birth
and Passed Away Dates, Sex, and parents of some people
of interest, having foreign keys Mother and Father, both
referencing P_Id, and not allowing persons to die before
or more than 160 years after being born) like the one in
Figure 1 might still store highly implausible data.

PERSONS (BDate + 160years ≥ PADate ≥ BDate)

P_Id FName LName BDate Sex Mother Father PADate

auton ASCII
(64)

ASCII
(64)

[1/1/1900,
today]

{‘F’,
‘M’} in P_Id in P_Id [1/1/1900,

today]
not-
null not-null not-null not-null not-null

1 John Smith 1/1/2020 M 4 1 1/1/2020

2 Mary Jane 1/1/1900 F 4 5 1/12/1999

3 Paul Smith 1/1/2010 M 1 2 1/1/2012

4 Anne Jane 1/1/2020 F 4 3

5 Peter Smith 1/1/1990 M 2 2

Figure 1. A table with relationally valid, but highly
implausible data

It is quite simple to check that data in this table does
not violate any of its relational constraints (5 of domain
type, 5 not-nulls, 1 key, 2 foreign keys, 1 check/tuple).
However, this data is highly implausible, because,
according to it:

(1) John Smith is his own father and has a mother born
same day as him.

(2) Mary Jane has a mother born after she died, a father
born 90 years after her birth, and is the father of her father.

(3) Paul Smith has a man (born after him) as mother and
a woman (who died 20 years before his birth) as father.

(4) Anne Jane is her own mother and has a father who
died 8 years before her birth.

(5) Peter Smith has a woman as both father and mother,
was born 90 years after her birth, and is the father of his
father.

In (E)MDM, in order to prevent storing such
implausible data, the following 6 non-relational
constraints should be added to the above 14 relational

ones, in the scheme of this table:
(1) C1: (∀x ∈ PERSONS)(Sex(Mother(x)) = ‘F’) (i.e.

only women may be mothers)
(2) C2: (∀x ∈ PERSONS)(Sex(Father(x)) = ‘M’) (i.e.

only men may be fathers)
(3) C3: Mother acyclic, C4: Father acyclic (i.e. nobody

may be her/his own mother/father, neither directly, nor
indirectly)

(4) C 5: (∀ x ∈ P E R S O N S) (B D a t e (x) ≤ PA -
Date(Mother(x))∧BDate(x) + 5years ≤ BDate(Mother(x))
≤ BDate(x) + 75years) (i.e. no mother may give birth after
her death, before being 5 years old, or after being 75 years
old)

(5) C6: (∀x ∈ PERSONS)(BDate(x) ≤ PADate(Fa-
ther(x)) + 10month ∧ BDate(x) + 9years ≤ BDate(Fa-
ther(x)) ≤ BDate(x) + 100years) (i.e. no father may have a
child after 10 months from his death, before being 9 years
old, or after being 100 years old)

As proved by this example (as well as many others,
see, e.g. [6,7,13]), when a single business rule is not
formalized by a corresponding constraint and/or that
constraint is not enforced in the corresponding db scheme,
implausible data may be stored in that db.

Just like for object sets and mappings between them,
constraints can be discovered only by humans. However,
computer science and math can assist in this process: e.g. the
keys discovery assistance algorithms [6,8,13], the algorithm for
assisting discovery of non-relational constraints associated
to the E-RDM diagram cycles [11,13], the similar ones for
endofunctions and object constraints [12,13], the constraint sets
coherence and minimality ones [10,13], etc.

Currently, non-relational constraints are, unfortunately,
not discovered by db architects, who are not even aware
of their typology. Some of them are considered by some
software architects, sometimes, but always in an ad-
hoc manner. Most of them are ignored, so not enforced,
reported then as bugs by customers, and enforced
as software fixes, most of the times too late, after
corresponding db instances are seriously polluted with
implausible data.

This paper introduces and discusses first an algorithm
for assisting discovery of non-relational constraints
associated to dyadic relations, providing a valuable tool
to db and software architects. By replacing in it dyadic
relationships with tables and mappings with columns,
one may successfully use it for corresponding RDM table
schemes as well (corresponding table schemes should
have a concatenated key made out of two not null foreign
keys referencing a same other table).

This algorithm is embedded in MatBase, which is
also automatically generating code for enforcing all non-

3

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jeisr.v2i2.2090

relational constraint types provided by (E)MDM, thus
significantly enhancing productivity and quality of db
applications development. This paper also presents and
discusses the algorithm for enforcing the constraints
associated to dyadic relationships.

This first section presents an overview of the 73 (E)
MDM constraint types, related work, and the paper
outline.

1.1 (E)MDM Constraint Types

(E)MDM provides three constraint categories: set,
mapping, and object [10,13].

The set category has two subcategories (and 16 types):
(1) general set (comprising five types: inclusion, set

equality, disjointness, union, and direct sum) and
(2) dyadic relation (comprising eleven types:

connectivity, reflexivity, irreflexivity, symmetry,
asymmetry, transitivity, intransitivity, Euclideanity,
inEuclideanity, acyclicity, equivalence).

The mapping category has five categories (and 56
types):

(1) General function (having six types: totality,
nonprimeness, one-to-oneness, ontoness, bijectivity, and
default value),

(2) Endofunction (having thirteen types: reflexivity,
null-reflexivity, irreflexivity, symmetry, null-symmetry,
asymmetry, idempotency, null-idempotency, anti-
idempotency, equivalence, null-equivalence, acyclicity,
canonical surjection),

(3) Function product (having three types: existence,
nonexistence, and minimal one-to-oneness),

(4) Homogeneous binary function product (having
eighteen types: connectivi ty, null-connectivi ty,
reflexivity, null-reflexivity, null-identity, irreflexivity,
symmetry, null-symmetry, asymmetry, transitivity, null-
transitivity, intransitivity, Euclideanity, null-Euclideanity,
inEuclideanity, acyclicity, equivalence, null-equivalence),
and

(5) Funct ion diagram (having s ixteen types:
commutativity, null-commutativity, anti-commutativity,
generalized commutativity, local commutativity, local
null-commutativity, local anti-commutativity, local
symmetry, local null-symmetry, local asymmetry,
local idempotency, local null-idempotency, local anti-
idempotency, local equivalence, local null-equivalence,
local acyclicity).

The object constraints are generalizing RDM tuple
(check) constraints, being closed Horn clauses [17] (e.g. C1,
C2, C5, and C6 above).

A generalized commutativity constraint is an object
constrained associated to a function diagram (i.e. implying

only sets and mappings from that diagram).
Please recall that dyadic relations are binary

h o m o g e n e o u s o n e s (e . g . P R E R E Q U I S I T E S ⊆
COURSES2), endofunctions (autofunctions, self-
functions) have same domain and codomain (e.g. Mother
: PERSONS → PERSONS), and homogeneous binary
function products (hbfp) are of the type f • g : D → C2 (e.g.
EmbarkmentAirport • DestinationAirport : BOARDING_
PASSES → AIRPORTS2).

For the differences between mathematical relations and
db relationships see [9]. In (E)MDM, dyadic relationships
are denoted R = (f → T, g → T), where f and g are R’s
roles (i.e. mathematically, the corresponding canonical
Cartesian product projections).

For example, the dyadic relationship PREREQUISITES
= (Prerequisite → COURSES, Course → COURSES)
should always be acyclic: otherwise, no student might
ever enroll in any of the courses involved in a cycle.

Any dyadic relationship has the following 5 relational
constraints: both f and g are not null and foreign keys
referencing table T, and f • g is a key.

Object constraints may be as well associated to dyadic
relations (e.g. (∀x∈PREREQUISITES)(∀y,z∈ENROLL-
MENTS)(Student(y) = Student(z) ∧ Course(y) = Pre-
requisite(x)∧ Course(z) = Course(x) ⇒ EnrollDate(z) >
CompletionDate(y)), i.e. no student may enroll to a course
before completion of all of its prerequisites) and to endo-
functions [12,13].

A function is total if it does not take null values (i.e. it
is totally defined or, equivalently, its codomain is disjoint
from the NULLS distinguished set of null values) and is
nonprime if it cannot be part of any key (i.e. not only not
one-to-one, but not a member of any minimally one-to-
one function product; e.g. Height, Length, Width, Color,
etc.).

An endofunction or a hbfp that may take null values
and has property P (e.g. reflexivity, symmetry, etc.) for all
of its not null values is said to have property null-P (e.g.
ReplacementPart : PART_TYPES → PART_TYPES is null-
idempotent, because any replacement part type is replaced
by itself, but there are part types that may not be replaced
by other ones).

(E)MDM extended the RDM existence constraints
f  g (“whenever f takes not null values, g must take
not null values as well”) by allowing both f and/or g to
be computed functions (e.g. e-mail  City • Address,
i.e. whenever the e-mail address of someone is known to
the db, then both the city and the address within the city
where he/she lives should also be known to the db).

A nonexistence constraint, denoted ¬ f1 • … •
fn, should be read “at most one of the f1, …, fn may be

4

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0

not null for any x” (e.g. ¬ TributaryTo • Lake • Sea
• Ocean • LostInto : RIVERS → RIVERS × LAKES ×
SEAS × OCEANS × GEOGRAPHIC_UNITS formalizes
the constraint “a river may empty in only one place,
be it another river, a lake, a sea, an ocean, or another
geographic unit type, e.g. a desert”).

A function diagram made of mappings f, g : D → C
(which may be atomic or composite functions) anti-com-
mutes if (∀x∈ D)(f(x) ≠ g(x)) (e.g. (∀x∈ BOARDING_
PASSES)(EmbarkmentAirport(x) ≠ DestinationAir-
port(x))).

A function diagram has a local property P (e.g. sym-
metry, idempotency, etc.) in one of its sets if it is of the
circular type [11,13] and the composite endofunction de-
fined on and taking values from that set has the property
P (e.g. the diagram made of the functions Department :
EMPLOYEES → DEPARTMENTS and Manager : DE-
PARTMENTS → EMPLOYEES is locally idempotent in
EMPLOYEES, because the composite endofunction Ma-
nager ° Department : EMPLOYEES → EMPLOYEES is
idempotent, i.e. any manager works in the department that
he/she manages).

1.2 Related Work

Theoretically, the (E)MDM is based on the semi-naïve
theory of sets, relations, and functions [5], as well as on the
first order logic [14].

Other mathematical data models are the categorial [17]

and graph [4,16] ones.
Generally, there are very few db research results on

non-relational constraints (e.g. [18]), except for the (E)
MDM related ones ([10-13]).

MatBase algorithm for enforcing object constraints is
presented in [12].

Dyadic relations were extensively studied within the
realm of the set theory (e.g. [5]).

The most closely related approaches are based
on business rules management (BRM) [15] and their
corresponding implemented systems (BRMS) and process
managers (BPM). From this perspective, MatBase is also
a BRMS, but a formal, automatically code generating one.

A somewhat related approach as well is the logical
constraint programming [19], aimed only at solving
polynomial-complexity combinatoric problems (e.g.
planning, scheduling, etc.).

1.3 Paper Outline

Section 2 concisely presents the MatBase graphical
user interface (GUI) for managing relationships (which
includes the subset of dyadic ones). Sections 3 is devoted
to the MatBase algorithm for assisting discovery of dyadic
relationship constraints. Section 4 presents the MatBase
algorithm for enforcing the non-relational constraints
associated to dyadic relationships. Section 5 discusses
the complexity, optimality, and usefulness of these
two algorithms. The paper ends with conclusions and
references.

2. MatBase GUI for Relationships

Figure 2 shows the RELATIONSHIPS form that can be
open from the MatBase MetaCatalog / Scheme Updates
/ EMDM Scheme / Sets / Views submenu. This form
(together with its embedded subform) is the GUI for
managing the db relationships’ schemas.

Figure 2. MatBase RELATIONSHIPS form and its subform

Besides the columns visible in this figure (with the
computed *Arity -displaying the number of roles- and
*card -showing the cardinality of the instances-), there
are other ones as well: an optional Description (whose
left end is visible in Figure 2), the required Database (to
which relationships belong), a System flag (to distinguish

between user and MatBase metacatalog relationships), etc.
Users may not only inspect the set of all relationships

managed by the system, but also delete them (if they
are not underlying sets for hierarchically higher order
relationships), insert new relationships and/or modify
existing ones.

DOI: https://doi.org/10.30564/jeisr.v2i2.2090

5

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0

For example , t he cu r ren t ly se l ec ted row in
Figure 2 corresponds to the dyadic relationship
GalaxyNeighborhood = (Galaxy → GALAXIES ,
NeighborGalaxy → GALAXIES) from the Geography db,
which has been declared to be irreflexive (as no galaxy is
its own neighbor) and asymmetric (as, whenever galaxy
x is neighbor to galaxy y, it does not make sense to also
store the fact that y is neighbor to x).

The embedded subform manages the roles (i.e. the
canonical Cartesian projections) of the relationships.

The checkboxes from Acyclic? to Equivalence? are
active only for the dyadic relationships. Whenever
you uncheck one of them and then you confirm your
request, MatBase either rejects it if it is a redundant one
(e.g. if that relationship is acyclic, you cannot uncheck
either asymmetry or irreflexivity, as both are implied by
acyclicity) or is removing the automatically generated
code for enforcing the corresponding constraint.

Whenever you check one of them and then you confirm
your request, MatBase first checks whether the newly
resulted constraint set is coherent [10,13] and rejects it if
this is not the case (e.g. you cannot declare a relationship
being both acyclic and symmetric); then, it checks
whether the data instance of that relationship satisfies
the desired constraint and rejects it if this is not the case
(e.g. you cannot declare a relationship as being irreflexive
as long as there is a pair of the type <x, x> in its data
instance); finally, if everything is ok, MatBase accepts the
new constraint and automatically generates the code for
enforcing it; moreover, it also automatically remove the
code for enforcing constraints that became redundant (e.g.
if the relationship was irreflexive and becomes acyclic,
irreflexivity enforcing code is removed) and checks all
corresponding implied constraints.

Whenever you double-click on the row corresponding
to a dyadic relationship and confirm your request,
MatBase launches the algorithm presented in the next
section, which assists users in the process of discovering
all non-relational constraints associated with that
relationship.

3. MatBase Algorithm for Assisting Discovery
of Dyadic Relationship Constraints

Figures 3 and 4 present the Algorithm ADDRC, designed
for assisting discovery of dyadic relationship constraints,
which is implemented in both MatBase versions.

This Algorithm is optimally designed by incorporating
the following mathematical results on dyadic relation
properties [5,10,13]:
 acyclicity ⇒ asymmetry

 asymmetry∨ intransitivity∨ inEuclideanity ⇒ ir-
reflexivity
 asymmetry∧ transitivity ⇒ acyclicity
 reflexivity∧ Euclideanity ⇒ symmetry∧ transitivity
 symmetry∧ Euclideanity ⇒ transitivity
 symmetry∧ inEuclideanity ⇒ intransitivity
 symmetry∧ transitivity ⇒ Euclideanity
 symmetry∧ intransitivity ⇒ inEuclideanity
 irreflexivity∧ transitivity ⇒ asymmetry
 symmetry ∧ intransitivity ∧ inEuclideanity ⇒

¬connectivity
ALGORITHM ADDRC. Dyadic Relationship Constraints Discovery
Assistance
Input: a db scheme S and one of its dyadic relationship R
Output: S augmented with the newly discovered constraints associated
to R (if any)
Strategy:
 if R is, could and should be asymmetric then addCnstr(R,
“asymmetric”) else
 if R is, could and should be symmetric then addCnstr(R, “symmetric”)
end if;
 if R is, could and should be irreflexive then addCnstr(R, “irreflexive”)
else
 if R is, could and should be reflexive then addCnstr(R, “reflexive”)
end if;
 if R is, could and should be acyclic then addCnstr(R, “acyclic”) end
if;
 if R is, could and should be transitive then addCnstr(R, “transitive”)
else
 if R is, could and should be intransitive then addCnstr(R,
“intransitive”) end if;
 if R is, could and should be Euclidean then addCnstr(R, “Euclidean”)
else
 if R is, could and should be inEuclidean then addCnstr(R,
“inEuclidean”) end if;
 if R is, could and should be connected then addCnstr(R, “connected”)
end if;
End ALGORITHM ADDRC;

Figure 3. Algorithm ADDRC (Dyadic Relationship
Constraints Discovery Assistance)

ALGORITHM addCnstr(R, C). Adds constraint C to dyadic
relationship R’s scheme
Input: a dyadic relationship R of db scheme S and a constraint type C
Output: S augmented with C for R and corresponding redundant
constraints (if any)
Strategy:
 S = S ∪ {R C};
 Add corresponding redundant constraints for R in S;
End ALGORITHM addCnstr;

Figure 4. Algorithm addCnstr

For any dyadic relationship R, “is C” means that
its data instance satisfies constraint (i.e. mathematical
property) C; “could be C“ means that by adding constraint
C to its scheme, its constraint set remains coherent (i.e. it
does not contain any contradiction, see [10,13]) and that C
is not already in the R’s scheme (not even as a redundant
constraint); “should be C” is the question that MatBase

DOI: https://doi.org/10.30564/jeisr.v2i2.2090

6

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0

asks its users in order to find out whether there is a
business rule in the corresponding context stating that R
must always satisfy constraint C.

Consequently, “R is, could and should be C” means
that MatBase asks users “R should be C” only if both
the syntactical condition “R could be C“, as well as the
semantical one “R is C” are true.

The order in which ADDRC considers the constraint
types reflects our experience of more than 45 years in
conceptual data modeling: most of the dyadic relationships
are asymmetric (as their mathematical counterparts are

symmetric), hence irreflexive too, then there are quite a lot
of acyclic ones, with all other such constraint types being
less usual. For example, in a Geography db [13], all 11
dyadic relationships are asymmetric (and hence irreflexive
as well).

4. MatBase Algorithm for Enforcing the
Dyadic Relationship Constraints

Figure 5 presents the Algorithm AEDRC, designed for
enforcing the dyadic relationship constraints, which is
implemented in both MatBase versions as well.

ALGORITHM AEDRC. Dyadic Relationship Constraints Enforcement

Input: - a db scheme S, its associated RELATIONSHIPS form instance, the user request (check / uncheck), the corresponding dyadic relationship R =
(f → T, g → T) non-relational constraint type c from its current row, and the implied by c set I, as well as the set I’ of the constraints implied only by
c and not desired anymore in S;
 - Cancel = False;
Output: if Cancel then S
 else if uncheck then S = S  {c}  I’ else S = S ∪ {c} ∪ I;
Strategy:
select user request
 case uncheck:
 if user does not confirm his/her delete request then
 Cancel = True;
 check c’s checkbox;	 // undo request
 else if c is implied by some subset of constraints C’ then
 Cancel = True;
 check c’s checkbox;	 // undo request
 display “Constraint cannot be deleted as it is implied by C’!”;
 else
 loop for all event-driven methods of the classes associated to R
 delete line assigning to Cancel the value returned for c by the
 corresponding constraint type enforcement Boolean function;
 end loop;
 S = S  {c};
 loop for all constraints c’ in S that were implied only by c
 if user wishes to keep c’ then generate code needed to enforce c’;
 else S = S  {c’};
 uncheck c’s checkbox;	// remove unwanted implied constraint
 end if;
 end loop;
 end if;
 case check:
 Cancel = isCoherent(c);
 if Cancel then uncheck c’s checkbox;	 // undo request
 display “Constraint rejected: constraint set would become incoherent!”;
 else Cancel = isValid(c);
 if Cancel then uncheck c’s checkbox;	 // undo request
 display “Constraint cannot be enforced: current db instance violates it!”;
 else
 loop for all event-driven methods of the classes associated to R (and generate all those that might be missing)
 inject line assigning to Cancel the value returned for c by the corresponding
 constraint type enforcement Boolean function;
 end loop;
 S = S ∪ {c} ∪ I;
 loop for all constraints c’ in I
 check the checkbox corresponding to c’;	 // store that f also obeys c’
 end loop;
 end if;
 end if;
end select;
End ALGORITHM AEDRC;

Figure 5. Algorithm AEDRC (Dyadic Relationship Constraints Enforcement)

DOI: https://doi.org/10.30564/jeisr.v2i2.2090

7

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0

The Boolean functions isCoherent (checking that
adding / removing a constraint satisfies or violates
coherence) and isValid (checking whether the current
db instance satisfies a given constraint), as well as
many other useful functions for automatically enforcing
constraints generated code, are provided by MatBase in its
Constraints library [12,13].

5. Results and Discussion

5.1 Algorithms’ Complexity and Optimality

It is very easy to check that both these algorithms are
very fast, as they are never infinitely looping and their
time complexities are O(|C|) (i.e. linear in the average
number of dyadic relationship fundamental constraints,
generally between 0 and 3 [13]), for ADDRC, and O(|I|) (i.e.
linear in the average number of implied constraints by a
non-relational dyadic relationship constraint, generally
between 0 and 5 [13]), for AEDRC, respectively.

ADDRC is trivially not infinitely looping, as each
dyadic relationship and corresponding constraint types are
considered only once.

In the worse case (in which no non-relational constraint
is initially asserted for the current dyadic relationship and
none is discovered either), ADDRC is asking users all
of the 10 possible questions. Coherence and minimality
of the constraint sets are almost instantly checked, with
only two table row reads [10,13]. Only checking whether
the data instance of a dyadic relationship takes time
proportional with its cardinal (i.e. the number of rows in
the corresponding table). Consequently, it is preferable to
assert all such non-relational constraints immediately after
defining the relationship schemas, before allowing users
to enter data for them.

Moreover, ADDRC is also optimal, as, using both math
and our decades of conceptual data modeling experience,
it asks db designers the minimum number possible of
questions for any dyadic relationship.

ADDRC is implemented in the DoubleClick event
associated to the MatBase form RELATIONSHIPS.

AEDRC is trivially not infinitely looping either, as
any checkbox corresponding to a dyadic relationship
constraint type is considered only once.

Moreover, AEDRC is optimal too, as
(1) it searches in every object-oriented class only

within the event-driven methods and no such method is
visited twice and

(2) its implementations merges for deletions both code
injections and deletions in a same step, whereas checking
of implied constraints by a newly added one is done in
internal memory (and are saved in the db together with

the one done by users in the current constraint checkbox,
when the current row from RELATIONSHIPS is saved).

AEDRC is implemented in the BeforeUpdate /
Validating for checkbox controls associated to the non-
relational constraint types of the form RELATIONSHIPS.

5.2 Algorithms’ Usefulness

The main utility of ADDRC is, of course, in the realms of
data modeling and db constraints theory, whereas the one
of AEDRC in the db and db software applications design
and development ones: all constraints (business rules) that
are governing the sub-universes modelled by dbs, be them
relational or not, should be discovered and enforced in the
corresponding dbs’ schemas; otherwise, their instances
might be implausible.

Dyadic relationships have sometimes associated non-
relational constraints that may be much more easily
discovered by using the assistance algorithm ADDRC
presented in this paper.

Being transparent to users and automatical ly
generating constraint enforcement code, AEDRC not only
significantly enhances software architects and developers
productivity, but also saves them lot of debugging effort
and guarantees a very high quality standard.

6. Conclusion

In summary, we have designed, implemented, and
successfully tested in both MatBase latest versions
(for MS Access and C# and SQL Server) an algorithm
for assisting discovery of all non-relational constraints
associated to dyadic relationships, another one for
enforcing such constraints through automatic code
generation, analysed their complexities and optimality, as
well as outlined their usefulness for data modelling, db
constraints theory, db and db software application design
and development practices.

Very many non-relational db constraint types are
attached to dyadic relationships (dr). The first algorithm
presented in this paper helps users to analyse each such dr
exhaustively and intelligently, such that they may discover
all non-relational constraints associated to them in the
minimum possible time. Moreover, through automatic
code generation for enforcing them, MatBase significantly
increases both software development productivity and
quality.

These algorithms are successfully used both in
our lectures and labs on Advanced Databases (for the
postgraduate students of the Mathematics and Computer
Science Department of the Ovidius University, Constanta
and the Computer Science Taught in English Department

DOI: https://doi.org/10.30564/jeisr.v2i2.2090

8

Journal of Electronic & Information Systems | Volume 02 | Issue 02 | October 2020

Distributed under creative commons license 4.0

of the Bucharest Polytechnic University) and by two
Romanian IT companies developing db software
applications for many U.S. and European customers in the
Fortune 100 ones.

In fact, MatBase is automatically generating code
for enforcing non-relational constraints not only for
dyadic relationships, but also for object constraints,
endofunctions [12,13], the rest of the functions (including
Cartesian product ones), as well as for sets [13], which
makes it also a formal BRMS and adds (E)MDM to the
panoply of tools expressing business rules.

References

[1]	 Abiteboul, S., Hull, R., Vianu, V. Foundations of Da-
tabases. Addison-Wesley, Reading, MA, 1995.

[2]	 Chen, P. P. The entity-relationship model: Toward a
unified view of data. ACM TODS, 1976, 1(1): 9-36.

[3]	 Codd, E. F. A relational model for large shared data
banks. CACM, 1970, 13(6): 377-387.

[4]	 Gosnell, D., Broecheler, M. The Practitioner’s Guide
to Graph Data: Applying Graph Thinking and Graph
Technologies to Solve Complex Problems. O’Reilly
Media, Inc. Sebastopol, CA, 2020.

[5]	 Jech, T. Set Theory. Springer Monographs in Math-
ematics (Third Millennium ed.). Springer-Verlag,
Berlin, New York, 2003.

[6]	 Mancas, C. Conceptual Data Modeling and Database
Design: A Completely Algorithmic Approach. Vol-
ume I: The Shortest Advisable Path. Apple Academic
Press / CRC Press (Taylor & Francis Group), Ware-
town, NJ, 2015.

[7]	 Mancas, C. On the paramount importance of data-
base constraints. J. Inf. Tech. & Soft. Eng., 5(3):1-4.
Henderson, NV, 2015.

[8]	 Mancas, C. Algorithms for key discovery assistance.
In: Repa, V., Bruckner, T. (eds). BIR 2016, LNBIP,
Springer, Cham, 2016, 261: 322-338.

[9]	 Mancas, C. On Database Relationships versus Math-
ematical Relations. Global Journal of Comp. Sci.
and Techn.: Soft. and Data Eng., Framingham, MA,

2016, 16(1): 13-16.
[10]	Mancas, C. MatBase Constraint Sets Coherence and

Minimality Enforcement Algorithms. In: Benczur,
A., Thalheim, B., Horvath, T. (eds.), Proc. 22nd AD-
BIS Conf. on Advances in DB and Inf. Syst., LNCS
11019, Springer, Cham, 2018: 263-277.

[11]	Mancas, C. MatBase E-RD Cycles Associated
Non-Relational Constraints Discovery Assistance
Algorithm. In: Arai, K., Bhatia, R., Kapoor, S. (eds.),
Intelligent Computing, Proc. 2019 Computing Con-
ference, AISC Series, Springer, Cham, 2019, 997(1):
390-409.

[12]	Mancas, C. Matbase Autofunction Non-Relational
Constraints Enforcement Algorithms. IJCSIT, 2019,
11(5): 63-76.

[13]	Mancas, C. Conceptual Data Modeling and Database
Design: A Completely Algorithmic Approach. Vol-
ume II: Refinements for an Expert Path. Apple Aca-
demic Press / CRC Press (Taylor & Francis Group),
Waretown, NJ, 2021, in press.

[14]	Rautenberg, W. A Concise Introduction to Mathe-
matical Logic (3rd ed.). Springer Science+Business
Media, NY, 2010.

[15]	Ross, R. G. Principles of the Business Rule Ap-
proach. Addison-Wesley Professional, Boston, MA,
2003.

[16]	Shinavier, J., Wisnesky, R. Algebraic property
graphs. Tech. Rep. Cornell Univ., 2019.

	 https://arxiv.org/pdf/1909.04881.pdf
[17]	Schultz, P., Wisnesky, R. Algebraic Data Integration.

Expanded and corrected version of the paper pub-
lished in J. Functional Programming, 27, E24, Cam-
bridge Univ. Press, 2017.

	 https://arxiv.org/pdf/1503.03571.pdf
[18]	Thalheim, B. Entity-Relationship Modeling: Foun-

dations of Database Technology. Springer-Verlag,
Berlin, 2000.

[19]	Thom, F., Abdennadher, S. Essentials of Constraint
Programming. Springer-Verlag, Berlin, Germany,
2003.

DOI: https://doi.org/10.30564/jeisr.v2i2.2090

