The Stress of COVID-19 : playing havoc with the hormones-a review

Sukhminder Jit Singh Bajwa (Department of Anaesthesiology and Intensive Care Gian Sagar Medical College and Hospital, Banur, Patiala, Punjab, India)
Ridhima Sharma (Superspeciality Paediatric hospital and Postgraduate teaching institute Noida, Uttar Pradesh, India)
Madhuri S Kurdi (Karnataka Institute Of Medical Sciences(KIMS) Hubli, Karnataka, India)

Abstract


Severe acute respiratory syndrome coronavirus- 2 (SARS-CoV-2)  has affected millions of people across the world engendering an unprecedented pandemic.  Coronavirus disease (COVID)-19 can present asymptomatic or in the form of the acute respiratory syndrome, viral pneumonia,or sepsis. Due to the novelty of the disease, the endocrine manifestations are not fully understood. It becomes indispensable to address the underlying endocrine disruptions contributing to the severe form of illness and thereby increasing the mortality.We discuss here the SARS-CoV-2 virus and based on its similarity with the SARS-CoV-1 virus, exploration of the endocrine reverberations based on the research with structurally similar SARS-COV-1. SARS-CoV-2 enters the body via its attachment to the angiotensin-converting enzyme 2 (ACE2) receptors. Apart from lungs, ACE2 expression   on various organs can lead to endocrine perturbations. In COVID-19 infection with pre-existing endocrine disorders warrant cautious management and may require replacement therapy.COVID-19  and its repercussions on hormones are discussed extensively in this review.


Keywords


Coronavirus disease ( COVID)-19, endocrine, hormones, pandemic, severe acute respiratory syndrome coronavirus (SARS-CoV)-2

Full Text:

PDF

References


Téblick A, Peeters B, Langouche L, Van den,Berghe G. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol 2019;15:417-427.

Khoo B, Boshier PR, Freethy A,Tharakan G, Saeed S, Hill N. et al. Redefining the stress cortisol response to surgery. Clin Endocrinol (Oxf) 2017; 87: 451–58.

Alves C, Casqueiro J, Casqueiro J. Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J Endocrinol Metab 2012; 16:27.

Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes MetabSyndr 2020; 14:211–2.

Gralinski LE, Menachery VD .Return of the coronavirus: 2019-nCoV. Viruses 2020; 12:135. 10.3390/v12020135.

Phan T. Novel coronavirus from discovery to clinical diagnostics. Infect Genet Evol 2020; 79:104211.

de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14:523–534.

Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol 2020; 79:104212.

Chen L, Liu W, Zhang Q, Xu K, Ye G, Wu W, et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. EmergMicrob Infect 2020; 9:313–319.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 10.1038/s41586-020-2012-7.

Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020; 92:418–423.

Du Y, Tu L, Zhu P, Wang R, Yang P, Wang X,et al. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan. A Retrospective Observational Study. Am J Respir Crit Care Med 2020;201(11):1372-1379.

Gao Y, Li T, Han M, Li X, Wu D, Xu Y, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol 2020;92(7):791-796.

Channappanavar R., Zhao J., Perlman S. T cell-mediated immune response to respiratory coronaviruses. Journal 2014; 59:118–128.

Rabi F.A., Al Zoubi M.S., Kasasbeh G.A., Salameh D.M., Al-Nasser A.D. SARS-CoV-2 and Coronavirus disease 2019: what we know so far. Journal 2020; 9(3):231.

Chang L, Yan Y, Wang L .Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev 2020;34:75-80

Liu F, Long X, Zou W, Fang M, Wu W, Li W, et al. Highly ACE2 Expression in Pancreas May Cause Pancreas Damage After SARS-CoV-2 Infection. medRxiv; 2020. DOI: 10.1101/2020.02.28.20029181.

Leow MK-S, Kwek DS-K, Ng AW-K, Ong K-C, Kaw GJ-L, Lee LS-U. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol 2005; 63:197–202.

Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43(7):1027-1031. doi:10.1007/s40618-020-01276-8

Kaiser UB, Mirmira RG, Stewart PM. Our Response to COVID-19 as Endocrinologists and Diabetologists. J Clin Endocrinol Metab 2020 May 1;105(5):dgaa148. doi: 10.1210/clinem/dgaa148. PMID: 32232480; PMCID: PMC7108679.

Nataf S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID?19. J Med Virol 2020;92:1743-1744.

Wei L, Sun S, Zhang J, Zhu H ,Xu Y, Ma Q et al. Endocrine cells of the adenohypophysis in severe acute respiratory syndrome (SARS). Biochem Cell Biol 2010; 88:723–30.

Agarwal S, Agarwal SK. Endocrine changes in SARS-CoV-2 patients and lessons from SARS-CoV. Postgraduate Medical Journal 2020; 96 :412-416.

Leow MK, Kwek DS, Ng AW, Ong KC, Kaw GJ, Lee LS. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf) 2005;63:197-202.

Vladutiu GD, Natelson BH. Association of medically unexplained fatigue with ACE insertion/deletion polymorphism in Gulf War veterans. Muscle Nerve 2004;30:38-43.

Hoffmann M, Kleine-Weber H, Schroeder S,Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-280.

Sriramula S, Xia H, Xu P, Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension 2015;65(3):577-586.

Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008;82(15):7264-7275.

Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology 2020;58:299-301.

Vilar L, Abucham J, Albuquerque JL, Aroujo LA, Aevedo MF, Boguszewski CL, et al. Controversial issues in the management of hyperprolactinemia and prolactinomas - an overview by the Neuroendocrinology Department of the Brazilian Society of Endocrinology and Metabolism. Arch Endocrinol Metab 2018;62:236-263.

Vardas K, Apostolou K, Briassouli E,Goukos D, Psarra K, Botoula E. et al. Early response roles for prolactin cortisol and circulating and cellular levels of heat shock proteins 72 and 90α in severe sepsis and SIRS. Biomed Res Int 2014; 2014:803561.

Tasker RC, Roe MF, Bloxham DM, White DK, Ross-Russell RI, O’Donnell DR. The neuroendocrine stress response and severity of acute respiratory syncytial virus bronchiolitis in infancy. Intensive Care Med 2004;30:2257-2262.

Wang W, Ye Y, Yao H. Evaluation and observation of serum thyroid hormone and parathyroid hormone in patients with severe acute respiratory syndrome. J Chin Antituberculous Assoc 2003; 25:232-234.

Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma Ke, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368:m1295

Jonklaas J, Bianco AC, Bauer AJ,Burman KD, Cappola AR, Celi FS.et al.; American Thyroid Association Task Force on Thyroid Hormone Replacement. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid 2014;24:1670-1751.

Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. Journal of Endocrinological Investigation.2020;43:1027–1031.

Wei L, Sun S, Xu C, Zhang J, Xu Y, Zhu H, et al . Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol 2007; 38:95–102.

Wheatland R. Molecular mimicry of ACTH in SARS— implications for corticosteroid treatment and prophylaxis. Med Hypotheses 2004;63:855–862.

Ding Y, Wang H, Shen H,, Li Z, Geng J, Han H, Cai J. et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 2003; 200:282–9.

Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L et al .Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020; 12:244.

Pal R, Bhansali A.COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract 2020;162:108132.

Yang J-K, Lin S-S, Ji X-J,Guo LM . Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47:193–9.

Yang J-K, Lin S-S, Ji X-J, Guo L-M.Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47:193–199.

Richard C, Wadowski M, Goruk S, Cameron L, Sharma AM, Field CJ. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care 2017May 8;5(1):e000379. doi: 10.1136/bmjdrc-2016-000379.

Yang JK, Feng Y, Yuan MY,Yuan SY, Fu HJ, Wu BY. et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006; 23:623–8.

Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract 2020;162:108132.

Lang Z, Zhang L, Zhang S,, Meng X, Li J, Song C. et al. Pathological study on severe acute respiratory syndrome. Chin Med J (Engl) 2003;116 :976-980.

Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020. DOI: 10.1016/j.bbrc.2020.02.071

Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002;532 :107-110.

Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells 2020;9(4):90 . doi: 10.3390/cells9040920

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181:271–280.e8 doi: 10.1016/j.cell.2020.02.052.

Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, et al. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study . medRxiv 2020 doi: https://doi.org/10.1101/2020.03.21.20037267. (Last accessed on 14 Nov 2020)

Xu J, Qi L, Chi X,Yang J, Wei X, Gong E. et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod 2006;74 :410-416.



DOI: https://doi.org/10.30564/jer.v2i2.2581

Refbacks

  • There are currently no refbacks.
Copyright © 2021 Sukhminder Jit Singh Bajwa, Ridhima Sharma, Madhuri S Kurdi Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.