Due to Processed Radio Frequency towards Pancreas Debilitating Worldwide Deadly Diabetes

Md. Rahimullah Miah (Head Department of Information Technology in Health North East Medical College & Hospital Affiliated with Sylhet Medical University Sylhet, Bangladesh)
Md. Shahariar Khan (Department of Paediatrics, Northeast Medical College & Hospital, Sylhet, Bangladesh)
AAM Shazzadur Rahman (Associate Professor, Department of Medicine, Northeast Medical College, Sylhet, Bangladesh)
Mohammad Abdul Hannan (Associate Professor, Department of Endocrinology, Northeast Medical College & Hospital, Sylhet, Bangladesh)
Md. Sabbir Hossain (Associate Professor, Department of Pathology, North East Medical College and Hospital, Sylhet, Bangladesh)
Chowdhury Shadman Shahriar (USMLE Student, USA and Ex-student of North East Medical College, Sylhet, Bangladesh)
S.A.M. Imran Hossain (Associate Professor and Head, Department of Oral and Maxillofacial Surgery, North East Medical College and Hospital, Sylhet)
Mohammad Taimur Hossain Talukdar (Associate Professor, Department of Clinical Oncology, North East Medical College and Hospital, Sylhet, Bangladesh)
Mohammad Shamsul Alam (Associate Professor and Head, Department of Forensic Medicine, Northeast Medical College and Hospital, Sylhet)
Mohammad Basir Uddin (Assistant Professor, Department of Paediatrics, Northeast Medical College and Hospital, Sylhet, Bangladesh)
Alamgir Adil Samdany (Professor and Head, Department of Orthopedics, Northeast Medical College, Sylhet, Bangladesh)
Shahriar Hussain Chowdhury (Professor and Head, Department of Dermatology, Northeast Medical College, Sylhet, Bangladesh)
Alexander Kiew Sayok (Associate Professor and Research Fellow, IBEC, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia)

Abstract


Diabetes is a non-communicable disease related with strangely high levels of blood glucose. Yet Medical authorities are facing the unwanted augmenting causes of diabetes as a very important global issue for several years. The study attempts to relook at the applications of the high radio frequency that affect on pancreas within and around the body boundary. Qualitative and quantitative radio frequency sensor data were obtained from the specimen cats and dogs at lab experiments. The study represents the urine flow speed fluctuates with infection due to processed wireless sensor networks. The obese individuals are quickly affected in diabetes due to staying at dark environment. The findings reflect the importance in diabetes through prevention and treatment that the physicians provide, which fails to recover due to access abusing sensor networks. Scientific healthcare support is essential for diabetes treatment but such supports are still below par to alarming public health security. The study suggests future research trajectories of a new sophisticated alternative approach to promote diabetes treatment and well-being linking with National Sensor Network Security and Sustainable Development Goals 2030.


Keywords


Diabetes, Radio Frequency; Pancreas; Body boundary; Network Security;

Full Text:

PDF

References


[1]Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A.A., Ogurtsova, K., Shaw, J.E., Brighth, D., Williams. R. and IDF Diabetes Atlas Committee. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9thedition. Diabetes Research and Clinical Practice,157, 107843, 1-10. DOI: https://doi.org/10.1016/j.diabres.2019.107843.

[2]Narayan, K.M.V., Zhang, P., Kanaya, A.M., Williams, D.E., Engelgau, M.M., Imperatore, G. and Ramachandran, A. (2006). Disease Control Priorities in Developing Countries. 2nd edition. Jamison DT, Breman JG, Measham AR, et al. [eds]. Chapter 30Diabetes: The Pandemic and Potential Solutions. NCBI. URL: https://www.ncbi.nlm.nih.gov/books/NBK11777/.

[3]Lin, X., Xu, Y., Pan, X. et al. (2020). Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 10, 14790 (2020). https://doi.org/10.1038/s41598-020-71908-9.

[4]Health Hub. (2021). Diabetes Mellitus, Health Hub, Singapore. URL: https://www.healthhub.sg/a-z/diseases-and-conditions/102/topics_diabetes (Accessed time on January18, 2021 at 9:00 am).

[5]IDF. (2020). Diabetes facts & figures. International Diabetes Federation (IDF), Belgium. URL: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html (Accessed time on January 19, 2021 at 12:00 pm).

[6]IDF. (2020a). COVID-19 and diabetes. IDF, Belgium. URL: https://www.idf.org/aboutdiabetes/what-is-diabetes/covid-19-and-diabetes/1-covid-19-and-diabetes.html (Accessed time on January 19, 2021 at 1:00 pm).

[7]Abidi, B., Jilbab, A., and Haziti, M.E.L. (2016). Wireless Sensor Networks in biomedical: wireless body area networks. In: Procedings of the Europe, Middle East and North Africa Conference on Technology and Security to support Learning. EMENA-TSSL, SaidaOujda, Morocco, 3–5.

[8]ADA (American Diabetes Association). (2003). Physical Activity/Exercise and Diabetes Mellitus. Diabetes Care, suppl 1: s73-s77. url: https://doi.org/10.2337/diacare.26.2007.S73.

[9]Agarwal, N. and Hussain, S.Z. (2018). A Closer Look at Intrusion Detection System for Web Applications. Security and Communication Networks, 1–28. DOI: https://doi.org/10.1155/2018/96013

[10]Azizi, F., Hatami, H. and Janghorbani, M. (2007).Epidemiology and Control of Common Disease in Iran.Tehran: Eshtiagh Press, 1–5.

[11]Babamiri, B., Bahari, D., Salimi, A. (2019). Highly sensitive bioaffinityelectrochemiluminescence sensors: Recent advances and future directions. Biosensors and Bioelectronics, 111530. DOI: https://doi.org/10.1016/j.bios.2019.111530.

[12]Bal, A. (2000). Diabetes: ethical, social and economic aspects.The Indian Journal of Medical Ethics, 8:3.

[13]Bilal, M and Kang, S.G.(2017).An Authentication Protocol for Future Sensor Networks. Sensors, 17(5): 979. DOI:10.3390/s170509.79.

[14]Boutry, C. M., Beker, L., Kaizawa, Y., Vassos, C., Tran, H., Hinckley, A. C., Pfattner, R., Niu, S. M., Li, J. H., Claverie, J., Wang, Z., Chang, J., Fox, P. M.,andBao, Z. N. (2019). Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nature Biomedical Engineering, 3(1): 47–57. DOI:10.1038/s41551-018-0336-5.

[15]Burge, M.R., Mitchell, S., Sawyer, A.,Schade, D.S.(2008). Continuous glucose monitoring: the future of diabetes management. Diabetes Spectr.,21: 112–119.

[16]Butun I., Morgera S., Sankar R. (2014). A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutor, 16:266–282. DOI: 10.1109/SURV.2013.050113.00191.

[17]Butun I., Ra I.H., Sankar R. (2015). PCAC: Power-and Connectivity-Aware Clustering for Wireless Sensor Networks. EURASIP J. Wirel. Commun. Netw., 1:1–15. DOI: 10.1186/s13638-015-0321-6.

[18]Chaudhary, D. and Waghmare, L.M. (2014). Design Challenges of Wireless Sensor Networks and Impact on Healthcare Applications. International Journal of Latest Research in Science and Technology, 3(2):110–114.

[19]Control, C. f. D. Prevention, C. f. D. Control, and Prevention .(2011). National diabetes fact sheet: national estimates and general information on diabetes and pre-diabetes in the United States, Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 201.

[20]Dazzi, D., Taddei, F., Gavarini, E A., Negro, U.R. and Pezzarossa, A. (2001). The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method. Journal of Diabetes and its Complications, 15: 80–87.

[21]Deedwania, P. C. and Fonseca, V. A. (2005). Diabetes, prediabetes, and cardiovascular risk: shifting the paradigm. The American journal of medicine, 118: 939–947.

[22]Delamater,A. M., Jacobson,A. M., Anderson, B., Cox,D., Fisher,L.,Lustman, P., Rubin, R.and Wysocki, T. (2001). Psychosocial Therapies in Diabetes: Report of the Psychosocial Therapies Working Group. Diabetes Care, 24(7): 1286-1292. DOI: https://doi.org/10.2337/diacare.24.7.1286.

[23]Ding, S. and Schumacher, M. (2016). Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review. Sensors, 16, 589: 1–13. doi:10.3390/s16040589.

[24]Forouhi, N.G., Misra, A., Mohan,V., Taylor, R. and Yancy., W. (2018). Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ, 361:k2234,1–9. DOI: 10.1136/bmj.k2234.

[25]Forouzanfar M.H., Alexander, L., Anderson, H.R., Bachman, V.F., Biryukov, S., Brauer, M., Burnett, R., Casey, D., Coates, M.M., Cohen, A., Delwiche, K., Estep, K., Frostad, J.J., Astha, K.C., Kyu, H.H., Moradi-Lakeh, M., Ng, M…. et al.,(2015).Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 386(10010):2287-323. DOI: 10.1016/S0140-6736(15)00128-2.

[26]Frier, B.M. (2014). Hypoglycaemia in diabetes mellitus: Epidemiology and clinical implications. Nat. Rev. Endocrinol.,10: 711–722.

[27]Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D H, Brooks G A, Davis R W, Javey A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587): 509–514. DOI:10.1038/nature16521.

[28]Glasgow, R.E. (1995). A Practical Model of Diabetes Management and Education. DiabetesCare, 18(1): 117–126.

[29]Goharimanesh, M., Lashkaripour, A. and Akbari, A. (2015). A Comparison of Fuzzy Types 1 and 2 in Diabetics Control, Based on Augmented Minimal Model. Journal of World’s Electrical Engineering and Technology,4(2): 70–75.

[30]Apicella, M., Campopiano, M.C., Mantuano, M., Mazoni, L., Coppelli, A., Prato, S.D. (2020). COVID-19 in people with diabetes: understanding the reasons for worse outcomes. The LANCET Diabetes and Endocrinology, 8 (9), 782-792. DOI: https://doi.org/10.1016/S2213-8587(20)30238-2.

[31]Grant, P. (2007). A new approach to diabetic control: fuzzy logic and insulin pump technology, Medical engineering & physics, 29: 824–827.

[32]Gupta, V.K., Gupta, M., and Arora.S. (2017). Diabetes: Ethical Issues. Chapter 159, Medicine Update, India.pp742-745. url: http://www.apiindia.org/pdf/medicine_update_2017/mu_159.pdf

[33]IDF (2019). What is Diabetes? About Diabetes.International Diabetes Federation, Brussels, Belgium. url:https://www.idf.org/aboutdiabetes/what-is-diabetes.html?gcid=EAIaIQobChMInML08.001. 8b00497

[34]IDF (International Diabetes Federation). (2017). Diabetes atlas. 8th ed. IDF, 2017. url: ww.diabetesatlas.org, Google Scholar.

[35]Islam, D., Huque, A., Sheuly, Mohanta, L.C., Das, S.K., Sultana, A. (2018). Hypoglycemic and hypolipidemic effects of Nelumbonucifera flower in Long-Evans rats. Journal of Herbmed Pharmacology, 7:148–54. DOI:10.15171/jhp.2018.25.

[36]Johnson, J. (2019). A review of therapies and lifestyle changes for diabetes. Medical News Today, 1-2. url: https://www.medicalnewstoday.com/articles/317074.php

[37]Johnston, B.C., Kanters, S., and Bandayrel, K.,… et al .(2014) . Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA,312 (9):923-33. DOI:10.1001/jama.2014.10397

[38]Kays, R., Tilak, S., Crofoot, M., Fountain, T., Obando, D., Ortega, A., Kuemmeth, F., Mandel, J., Swenson, G., Lambert, T., Hirsch, B. &Wikelski, M. (2011). Tracking Animal Location and Activity with an Automated Radio Telemetry System in a Tropical Rainforest. Published by Oxford University Press on behalf of the British Computer Society. The Computer Journal, 1(1): 1–18, doi: 10.1093/comjnl/bxr072.

[39]Khan Y, Han D, Pierre A, Ting J, Wang X C, Lochner C M, Bovo G, Yaacobi-Gross N, Newsome C, Wilson R, Arias A C. (2018). A flexible organic reflectance oximeter array. Proceedings of the National Academy of Sciences, 115(47): E11015–E11024. DOI:10.1073/pnas.1813053115.

[40]Khan Y, OstfeldA E, Lochner C M, Pierre A, A C. (2016). Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials,28(22): 4373–4395. DOI:10.1002/adma.201504366.

[41]Khan, R.I. and Pathan, A.S. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks,14(4):1–16. DOI: 10.1177/1550147718768994.

[42]Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A. (2011). Epidermal electronics. Science, 333(6044): 838–843. DOI:10.1126/science.1206157.

[43]Li T, Li Y, Zhang T. (2019). Materials, structures, and functions for flexible and stretchable biomimetic sensors. Accounts of Chemical Research,52(2):288–296. DOI:10.1021/acs.accounts.

[44]Li, Y., Zheng, L. and Wang, X. (2019). Flexible and wearable healthcare sensors for visual reality healthmonitoring. Virtual Reality & Intelligent Hardware,1(4):411—427.DOI: 10.1016/j.vrih.2019.

[45]Lou Z, Wang L L, Shen G Z. (2018). Recent advances in smart wearable sensing systems. Advanced Materials Technologies, 3(12): 1800444. DOI:10.1002/admt.201800444.

[46]Maideen, N.M.P. and Balasubramaniam,R.(2018). Pharmacologically relevant drug interactions of sulfonylurea antidiabetics with commonherbs. Journal of Herbmed Pharmacology.7:200–10. DOI:10.15171/jhp.2018.32.

[47]Mazid, M.A. (2019, Nov14.). Global Economic Impact of Diabetes. The Daily Asian Age, Dhaka, Bangladesh. url: https://dailyasianage.com/news/204986/global-economic-impact-of-diabetes.

[48]Moradi, B., Abbaszadeh, S., Shahsavari, S., Alizadeh,M. and Beyranvand, F. (2018). The most useful medicinal herbs to treat diabetes. Biomedical Research and Therapy, 5(8): 2538–2551.

[49]Murray, C.J.L. and Lopez, A.D.(eds.). (1996). The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in I990 and Projected to 2020. The Harvard School of Public Health on behalf of the World Health Organization and World Bank and distributed by Harvard University Press. 1–43.

[50]Nall, R. (2018). An overview of diabetes types and treatments.Newsletter on Health.Medical News Today,1(1): 1–5.

[51]O'Donovan, T., O'Donoghue, J., Sreenan, C., Sammon, D., O'Reilly, P., O'Connor, K.A. (2009). A Context Aware Wireless Body Area Network. Pervasive Computing Technologies for Healthcare. 1–2, DOI:10.4108/ICST.PERVASIVEHEALTH2009.5987.

[52]Osler, W. and McCrae, T. (1921). The principles and practice of medicine.D. Appleton and Company, 1921.

[53]Peiris, V. (2013). Highly integrated wireless sensing for body area network applications. The International Society for Optics and Photonics. SPIENewsroom. doi:10.1117/2.1201312.005120.

[54]Priya, S.P., Chowdary, V.A. and Dinesh, V.S. (2013). Wireless sensor networks to monitor Glucose level in blood. International Journal of Advancements in Research & Technology, 2(4): 322–326.

[55]Rahimi-Madiseh, M., Karimian, P., Kafeshani, M., Rafieian-Kopaei, M. (2017). The effects of ethanol extract of Berberis vulgaris fruit on histopathological changes andbiochemical markers of the liver damage in diabetic rats. Iranian Journal of Basic Medical Sciences, 20 : 552–556.

[56]Schiel, R., Bambauer, R. and Steveling, A. (2018). Technology in Diabetes Treatment: Update and Future. Artificial Organs, 42 (11), 1017–1027. url: https://doi.org/10.1111/aor.13296.

[57]Sha, H., Zeng, H., Zhao, J., & Jin, H. (2019). Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. European Journal of Pharmacology, 859: 172522.DOI:10.1016/j.ejphar.2019.172522.

[58]Sheridan C. (2014). Apple moves on health, drug developers shift into smart gear. Nature Biotechnology, 32(10): 965–966. DOI:10.1038/nbt1014-965a.

[59]Takei K, Honda W, Harada S, Arie T, Akita S. (2015). Toward flexible and wearable human-interactive health-monitoring devices. Advanced Healthcare Materials, 4(4): 487–500. DOI:10.1002/adhm.201400546.

[60]Vu C. and Kim J. (2018). Human motion recognition by textile sensors based on machine learning algorithms. Sensors, 18(9): 3109. DOI:10.3390/s18093109.

[61]Waltham. (2017). Feline Body Mass Index (FBMI). Waltham FBMI Calculator. 1–2. url: https://jscalc.z6_io/calc/hORP8x2bWjQU7qxq

[62]Wang X W, Gu Y, Xiong Z P, Cui Z, Zhang T. (2014). Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Advanced Materials,26(9): 1309. DOI:10.1002/adma.201470054.

[63]Westman, E.C., Yancy, W.S. Jr., Humphreys, M. (2006). Dietary treatment of diabetes mellitus in the pre-insulin era(1914-1922). PerspectBiol Med,49:77-83. DOI:10.1353/pbm.2006.0017

[64]WHO.(2018). Key Facts.Diabetes.url: https://www.who.int/news-room/fact-sheets/detail/diabetes.

[65]Wu, F., Xu, L., and Kumari, S. (2017). An Improved and Anonymous two factor authentication protocol for healthcare applications with wireless medical sensor networks. MultimedSyst, 23 (2), 195–205.

[66]Zang Y P, Zhang F J, Di C A and Zhu D B. (2015). Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons,2(2):140–156.DOI:10.1039/c4mh00147h.

[67]Zhang T, Bai Y Y, Sun F Q. (2018). Recent advances in flexible self-healing materials and sensors. ScientiaSinicaInformationis, 48(6): 650–669. DOI:10.1360/n112018-00117.

[68]Zhao W X, Bhushan A, Santamaria A, Simon M and Davis C.(2008). Machine learning: A crucial tool for sensor design. Algorithms,1(2): 130–152. DOI:10.3390/a1020130.

[69]Wang J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108:814–825. DOI: 10.1021/cr068123a.



DOI: https://doi.org/10.30564/jer.v3i1.2826

Refbacks

  • There are currently no refbacks.
Copyright © 2021 Md. Rahimullah Miah Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.