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Stock price volatility is considered the main matter of concern within the 
investment grounds. However, the diffusivity of these prices should as well 
be considered. As such, proper modelling should be done for investors to 
stay healthy-informed. This paper suggest to model stock price diffusions 
using the heat equation from physics. We hypothetically state that, our 
model captures and model the diffusion bubbles of stock prices with a bet-
ter precision of reality. We compared our model with the standard geomet-
ric Brownian motion model which is the wide commonly used stochastic 
differential equation in asset valuation. Interestingly, the models proved to 
agree as evidenced by a bijective relation between the volatility coefficients 
of the Brownian motion model and the diffusion coefficients of our heat 
diffusion model as well as the corresponding drift components. Conse-
quently, a short proof for the martingale of our model is done which happen 
to hold. 
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1. Introduction

Quants and econophysicists have become more popular 
and recognizable since the 2008 economic meltdown. 
Their unwary contributions and dormant to finance and 
economics led to poor and bad behaviour of the used 
models. In his book [1], discusses about models behaving 
badly in the financial world. He posits that, bad models 
and confusing illusion with reality can lead to devastations 
and disasters in the Wall Street trading tables. In 2008, 
most firms closed while others experienced negative 
growth. Only Renaissance technologies managed to 
survive better in Wall Street as a Hedge Fund (thumbs 
up for Jim Simons-the mathematician). Therefore, such 
economic devastating effects can affect life too. Of course, 
models of financial nature do work well in most instances 

but its success is contingent upon no even economic 
operations. Such models are not good at capturing market 
complexities. This implies that, needs for super imposed 
models that capture and model such complexities with 
frequent and more accurate forecasts are really required, 
thus, the emergence, existence and relevancy of financial 
physics in finance. This not so long paper aims to provide 
some theoretically based applications of the Brownian 
motion heat equation to modelling stock price diffusions. 
We follow the theory of [2] on Brownian motion and 
stochastic processes guiding the stock market operations. 
Today, the concept of Brownian motion has been 
recognized in various ways as:

A process with independent homogenous increments 
whose paths are continuous. 2. The continuous time 
process which is the limit of symmetric random walks and 
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lastly 3. the Markov process whose forward Kolmogorov 
equation is the heat equation. This study will focus on the 
third view, where we try to model the Markovness of stock 
prices using the diffusion heat equation. It is considerably 
valuable to analyze the paths taken by asset prices 
within markets especially to dynamic investors. This is 
because assets like stocks are dynamic and their prices are 
dynamic, continuous and random too. We theoretically 
study the diffusions associated with stock prices using the 
heat equation. Since its inception by [3], the heat equation 
has been exposed to wide and vast applications in the 
physics field not certainly in finance. In physics, we see 
the heat equation applied by [4] who investigated the effect 
of internal fins on flow pattern, temperature distribution 
and heat transfer between concentric horizontal cylinders 
for different fin orientations and fin tip geometry for 
Rayleigh numbers ranging from 103 to 106. They 
employed the two fin orientations used by [5]. Some other 
work is found in [6-8]. In addition, [9] studies the effect of 
magnetic field on the coupled heat and mass transfer by 
mixed convection in a linearly stratified stagnation flow in 
the presence of an internal heat generation or absorption. 

[10] studies thermal radiation effects on hydro magnetic 
free convection and flow through a highly porous medium 
bounded by a vertical plane surface, [11] considers the effect 
of radiation on unsteady natural convection in a two-
dimensional participating medium between two horizontal 
concentric and vertically eccentric cylinders. We can only 
mention just a few. The bad part, which is the good part 
about our study, is the non-existence and or insignificant 
direct existence of both theoretical and empirical literature 
on the application of the heat equation to modelling asset 
price movements. Much of the work is concentrated on the 
application of the Black-Scholes model, see[12-14]. All the 
presented models in literature are without doubt applicable 
and more powerful. However, their immunity to financial 
diseases arising from rare events such as market crushes 
is really poor, hence the need of more power and more 
realistic forecasting models. Therefore, this study supports 
the use and application of physical models to modelling 
diffusions associated with asset prices, in particular of 
stocks. Heat diffusion equation is applied. 

2. Main Results

We start by providing the widely used stochastic 
differential equation for stock price diffusions and the 
Brownian motion model before our main model. Stock 
prices are stochastic in nature and their uncertainty is not 
subject to vanishing in any way. As such, deterministic 
calculus and models cannot fully model the dynamics 
and diffusions associated with stock prices as they do not 

capture the randomness in association of stock prices. 
The widely used stochastic differential equation for time 
change of stock prices takes the following form as in [12].

                                                              (1)
Where, St is the stock is price, dWt is innovation term 

representing unpredictable events that occur during the 
infinitesimal interval dt. Noting also that a(St,t) and b(St,t) 
are the drift and diffusion coefficients respectively. From 
the model (1) above, the innovation term, dWt plays a vital 
role in explaining the randomness associated with stock 
prices, while their diffusions and dynamics are captured 
by b(St,t). Moreover, [15] pointed out another related mean-
reverting stochastic differential equation in the context of 
stock returns defined as: 

                          (2)
The term θ is the long-time mean of ν, γ is the rate of 

relaxation to this mean, Wt is a standard Wiener process, 
and k is the variance noise parameter. This equation is 
well known in financial world as the CIR process and in 
mathematical statistics as the Feller process, (see, [16-17]). 
Now the standard geometric (multiplicative) Brownian 
motion model for stock prices in the Ito form is defined as 
follows:

                                          (3)
The model is analogous to (1). The subscript t 

indicates time dependence, μ is the drift parameter, Wt 
is a standard random Wiener process, and σt is the time-
dependent volatility. Thus, our heat equation diffusion 
model is constructed from the basis of equations (1), (2) 
and (3). We intend to move from being deterministic to 
being stochastic by introducing the drift and the volatility 
coefficients to our heat diffusion model. Our main 
modelling process is thus well explained below:

2.1 One Dimensional Heat Equation

We firstly present the physical heat equation in one 
dimension as below. The model is used to model one-
dimensional temperature evolution [18]. 

                                                                    (4)
The most important features of this equation are the 

second spatial derivative uxx and the first derivative with 
respect to time, ut, otherwise the derivation of the model 
is beyond the scope of this text. The reader is urged to 
consult [18-19]. The most important part of the model is 
the positive constant a2 which is the diffusivity measure. 
Even though it is different from our final used model, its 
interpretation, relevancy and importance is similar. 

It is however important to provide some contextual 
meaning of this simple one-dimensional equation. In 
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our modelling case, U is the price function of stock 
assets which is subject to market forces from which the 
diffusion/volatility component, a2 gets support.  Note that, 
the model is time inhomogeneous in the sense that, it 
depends on time t. The equation can as well be extended 
to a two dimensional function, see [20]. Next we provide 
our main model which better models the diffusions of 
the stock prices in a continuous time space. Note that the 
model originates from the one-dimensional heat equation 
defined above. 

2.2 Main Model

This section presents the main diffusion model used in 
this study. The model takes the nature of the heat equation 
and is presented below:

                  (5)

The matrix of the diffusion coefficients, μ is related 
to the volatility function in the standard stochastic 
differential equation (1) b by the following:

                                                     (6)
Here b* is the transpose of the matrix b and the 

coefficients aj(x) correspond directly to a in the standard 
equation in (1) above. We are not as well interested in the 
derivation of the model in (5). The reader should note that 
the function U is the probability density function which 
in this case is the price probability density function. As 
such, if we integrate it over x, we should obtain something 
which is independent of t. By such, we can safely consider 
it as a sufficient price function. Note that, we consider 
our stock prices as martingales and as Markovian. Our 
approach as stated earlier is relying on the propositions 
of Louis Bachielier which one of them states that stock 
prices exhibit some patterns of Markov nature. In actual 
fact, the partial differential equation in (5) is a pure 
martingale. This is following the derived conditional 
expectation or the drift that aj = 0, and if aj = 0 then prices 
do not change over time. Non-martingale property is of 
course important in analysing stock prices. We will not 
get into detail of these. Our mission is on the diffusivity 
modelling of stock prices which we are now turning into 
in the below short paragraphed section. But before that, 
we provide below some evidence of the existence of the 
non-martingale property in equation (5). We take the 
expectation as follows:

If aj = 0 then we have  which 
leads to the following:

                                      (7)

2.3 Diffusivity of Stock Prices 

The main underlying aim of this paper is to model 
stock price diffusions within stock markets over a 
continuous time space. From the standard stochastic 
differential equation (SDE) in (1) above, stock volatility 
matters much to investors especially the risk averse ones. 
This implies that, whatever the volatility coefficient say 
or suggest, investors do pay attention and respect those 
exhibitions by responding accordingly. The main reason 
is that, they want to secure their investment payoffs. It is 
the stock price volatility and diffusion behaviour of some 
sort that explains the investment status in stock assets. 
However, little consideration seems to be paid on the links 
and relations between volatility and stock diffusions. This 
paper is prepared for that task. We shall in this section 
compare the standard equation in (1) with our diffusion 
equation in (5) above. We aim to compare the volatility 
coefficients and the diffusion coefficients of the models. 
Such, relation is considered to be helpful in explaining 
and establishing the relevancy of our main model in stock 
markets. The essence goes as:

Using the relation in (6), we first make a supposition 
that m=n=1 such that, μ , depend on b in the relation given 
by μ=b2. Generally speaking, we need a matrix which 
is analogous to the relation, μ=b2, such that we derive a 
square n×n matrix from n×m of b. This is well explained 
in a much simpler manner in the relation (6). Further, 
using the moment-matching approach we can safely and 
clearly compare our models and their corresponding 
volatility and diffusion components. Suppose b is a 
constant and, a=0, then x(0)=0 implies that z(0)=0 and 
we get X(t)=bZ(t). Thus, it follows that, Cov(X)=E[X(t)
X*(t)]=bb*t. Interestingly from (5) we get the expectation

                            (8)
which agrees with the relation in (6) We further provide 

some insights on the drift component. The drift component 
in (1) is given by aXdt and it corresponds to xau in (5). 
This can easily be followed if a is a constant and if b=0. 
The other interesting corollary is the negative transition in 
the probability density function of stock prices by a factor
u(x,t)=u(x-at). We subsequently provide some important 
results below which are informative.

3. Observational Results 

We provide some simple observational results following 
our analysis and modelling of stock prices. We note 
that, stock prices undergo some normal jumps which are 
better explained by a diffusion process defined above. 
The fundamental theorem of Levy we note that there 
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is no difference between the Wiener process and the 
diffusion process in their applications. The two can be used 
interchangeably. Thus, we note that, stock prices follow 
the Wiener process, when, Z(0)=0. Additionally, we note 
that the information from the observed diffusion bubbles 
associated with stock prices are helpful on planning in 
terms of asset allocation (portfolio creation), asset pricing 
and valuation, risk management and proper investment 
choice making. We noted some modelling related problems 
for heat equations which must be factored into account 
whenever our modelling makes use of the heat family 
of equations. Some of them include the infinite speed 
propagation with limited spreading, time step constraints 
for explicit difference methods and the smoothing property.  
Such features should be considered when dealing with our 
model defined in (5) for non-misleading results. We thus 
put forward that marching methods and finite differencing 
can be well used to solve heat diffusion equations. 

4. Conclusions

We conclude that stock price diffusions can well be 
explained by the heat diffusion equation. Our implemented 
model is considered worthwhile because it is in support 
with the standard geometric Brownian motion model. By 
comparing the drift and the volatility components of (1) to 
the drift and diffusion properties of (5) and the relation (6) 
we note that these are in agreement and thus our model can 
better explain the diffusivity of stock prices. Our model too 
can be used to explain the jumps associated with the stock 
prices as it provides a good base for analysing stock price 
paths in the market under a continuous time space. Such 
normal and systematic jumps are without doubt informative 
to investors and thus should be considered. Therefore, we 
note that our model is more applicable and informative. 
This surfaces the value and power of physical models 
in the financial world. We thus make a recommendation 
of their use in financial modelling. The reader is finally 
recommended to read the book by [1], “Models Behaving 
Badly” for more on such modelling phenomena. 
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