Enriched artemia nauplii with commercial probiotic in the larviculture of angelfish Pterophyllum scalare Lichtenstein (1823)

Authors

  • Natalino da Costa Sousa Federal University of Pará (UFPA), Campus Bragança, Alameda Leandro Ribeiro, Bragança, 68600-000, PA, Brazil
  • Márcia Valéria Silva do Couto Tiradentes University (UNIT) - Av. Murilo Dantas, 300 - Farolândia, CEP 49032-490, Aracaju, Sergipe, Brazil
  • Peterson Emmanuel Guimarães Paixão Tiradentes University (UNIT) - Av. Murilo Dantas, 300 - Farolândia, CEP 49032-490, Aracaju, Sergipe, Brazil
  • Estela dos Santos Medeiros Pio x, Av. Pres. Tancredo Neves, 5655 - Jabotiana, 49095-000, Aracaju – SE. Brazil
  • João Carlos Nunes de Souza Pio x, Av. Pres. Tancredo Neves, 5655 - Jabotiana, 49095-000, Aracaju – SE. Brazil
  • Francisco Alex Lima Barros Federal University of Pará (UFPA), Campus Bragança, Alameda Leandro Ribeiro, Bragança, 68600-000, PA, Brazil
  • Carlos Alberto Martins Cordeiro Federal University of Pará (UFPA), Campus Bragança, Alameda Leandro Ribeiro, Bragança, 68600-000, PA, Brazil

DOI:

https://doi.org/10.30564/jfsr.v2i1.1569

Abstract

This study evaluated the effect of enriched artemia nauplii with commercial probiotic for angelfish larvae determining productive performance, intestinal modulation and survival. Therefore, it experiment occurred in completely randomized design with five treatments (T1- 0.0, T2- 1.5, T3- 3.0, T4- 4.5 and T5- 6.0g of commercial probiotic) and four replaces during 20 days. After larvaculture, post larvae passed by biometric procedures to determine productive performance and then microbiological analysis. Occurred reduction of total heterotrophic bacteria while increased lactic acid bacteria in the intestinal tract from the post larvae for treatments T3, T4 and T5. The commercial probiotic also increased the survival and performance as final weight, weight gain and specific growth rate. For these reasons, the use of 3g of commercial probiotic promotes greater performance and intestinal modulation for angelfish larvae.

Keywords:

Ornamental fish, probiotic, larvaculture

References

[1] Zuanon, J.A.S.; Salaro, A.L.; Furuya, W.M. Produção e nutrição de peixes ornamentais. Revista Brasileira de Zootecnia, 2011, 40: 165-174.

[2] FAO – Food And Agriculture Organization of the United Nations. FAO Aquacultura Newsletter. Nº 56 (April), 2017, 64p.

[3] Abe, H.A., DIAS, J.A.R., Cordeiro, C.A.M., Ramos, F.M., Fujimoto, R.Y. Pyrrhulina brevis (steindachner, 1876) como uma nova opção para a piscicultura ornamental nacional: larvicultura. Boletim do Instituto de Pesca, 2015, 41: 113-122.

[4] Abe HA, Dias J.A, Reis R.G., Sousa N.C., Ramos, F.M, Fujimoto, R.Y. Manejo alimentar e densidade de estocagem na larvicultura do peixe ornamental amazônico Heros severus. Boletim do Instituto de Pesca, 2016, 42: 514-22.

[5] Pereira, S.L., Gonçalves-Júnior, L.P., Azevedo, R. Diferentes estratégias alimentares na larvicultura do acará-bandeira (Peterolophyllum scalare, Cichlidae). Acta Amzonica, 2016, 46: 91-98. DOI: 10.1590/1809-4392201500472

[6] Fujimoto, R.Y., Santos, R.F.B., Dias, H.M., Ramos, F.M., Silva, D.J.F., Honorato, C. A. Feeding frequency on the production viability of production and quantitative descriptors of parasitism in angelfish. Ciência Rural, 2016, 46: 304-309. DOI: 10.1590/0103-8478cr20141704

[7] Gonçalves-Junior, L. P., Mendonça, P.P., Pereira, S.L., Matielo, M.D., AMORIM, I.R.S. Densidade de estocagem durante a larvicultura do kinguio. Boletim do Instituto de Pesca. 2016, 40: 597-604.

[8] Couto, M.V.S.D., Sousa, N.D.C., Abe, H.A., Dias, J.A.R., Meneses, J.O., Paixão, P.E.G., Cunha, F.S., Ramos, F.M., Maria, A.N., Carneiro, P.C.F., Fujimoto, R. Y. Effects of live feed containing Panagrellus redivivus and water depth on growth of Betta splendens larvae. Aquaculture research, 2018, 49: 2671-2675. DOI: 10.1111/are.13727

[9] Azevedo, R.V., Fosse-Filho, J.C., Pereira, S.L., Andrade, D.R., Júnior, V.M. Prebiótico, probiótico e simbiótico para larvas de Trichogaster leeri (Bleeker, 1852, Perciformes, Osphronemidae). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2016, 68: 795-804. DOI: 10.1590/1678-4162-8580

[10] Malla, S., Banik, S. (2015). Production and application of live food organisms for freshwater ornamental fish Larviculture. Advances in Bioresearch, 6: 159–167.

[11] Loh, J.Y., Ting, A.S.Y. Effects of potential probiotic Lactococcus lactis subsp. lactis on digestive enzymatic activities of live feed Artemia franciscana. Aquaculture international, 2016, 24: 1341-1351. DOI 10.1007/s10499-016-9991-2

[12] Abe, H.A., Dias, J.A.R., Sousa, N.D.C., Couto, M.V.S.D., Reis, R.G.A., Paixão, P.E.G., Fujimoto, R.Y. Growth of Amazon ornamental fish Nannostomus beckfordi larvae (Steindachner, 1876) submitted to different stocking densities and feeding management in captivity conditions. Aquaculture Research, 2019, 50: 2276-2280. DOI: 10.1111/are.14108

[13] Fabregat, T.E.H.P., Wosniak, B., Takata, R., Miranda Filho, K.C., Fernandes, J.B.K., Portella, M.C. Larviculture of siamese fighting fish Betta splendens in low-salinity water. Boletim do Instituto de Pesca, 2017, 43: 164-171. DOI: 10.20950/1678-2305.2017v43n2p164

[14] Ahmadifard, N., Aminlooi, V. R., Tukmechi, A., Agh, N. Evaluation of the impacts of long-term enriched Artemia with Bacillus subtilis on growth performance, reproduction, intestinal microflora, and resistance to Aeromonas hydrophila of ornamental fish Poecilia latipinna. Probiotics and antimicrobial Proteins, 2018, 11: 957–965. DOI: 10.1007/s12602-018-9453-4

[15] Mouriño, J.L.P., Vieira, F.D., Jatobá, A.B., Silva, B.C., Jesus, G.F.A., Seiffert, W.Q., Martins, M.L. Effect of dietary supplemenation of inulin and W. cibaria on haemato-immunological parameters of hybrid surubim (Pseudoplatystoma sp). Aquaculture Nutrition, 2012, 18: 73-80. DOI:10.1111/j.1365-2095.2011.00879.x

[16] Mouriño, J.L.P., Vieira, F.N., Jatobá, A., Silva, B.C., Pereira, G.V., Jesus, G.F.A., Martins, M.L. Symbiotic supplementation on the hemato‐immunological parameters and survival of the hybrid surubim after challenge with Aeromonas hydrophila. Aquaculture Nutrition, 2015, 23: 276-284. DOI: 10.1111/anu.12390

[17] Azimirad, M., Meshkini, S., Ahmadifard, N., Hoseinifar, S. H. The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish & shellfish immunology, 2016, 54: 516-522. DOI: 10.1016/j.fsi.2016.05.001

[18] Vázquez-Silva, G., Ramírez-Saad, H.C., Aguirre-Garrido, J. F., Mayorga-Reyes, L., Azaola-Espinosa, A., Morales-Jiménez, J. Effect of bacterial probiotics bio-encapsulated into Artemia franciscana on weight and length of the shortfin silverside (Chirostoma humboldtianum), and PCR-DGGE characterization of its intestinal bacterial community. Latin american journal of aquatic research, 2017, 45: 1031-1043. DOI: 10.3856/vol45-issues5-fulltext-18

[19] Sousa, N. C, do Couto, M. V. S., Abe, H. A., Paixão, P. E. G., Cordeiro, C. A. M., Monteiro Lopes, E., Ready, J. S., Jesus, G. F. A., Martins, M. L., Mouriño, J. L. P., Carneiro, P. C. F., Maria, A. N., & Fujimoto, R. Y. (2019). Effects of an Enterococcus faecium‐based probiotic on growth performance and health of Pirarucu, Arapaima gigas. Aquaculture Research, 50, 3720–3728. https://doi.org/10.1111/ are.14332

[20] Vázquez-Silva, G., Castro-Mejía, J.J., Sánchez de la Concha, B., González-Vázquez, R., Mayorga-Reyes, L., Azaola-Espinosa, A. Bioencapsulation of Bifidobacterium animalis and Lactobacillus johnsonii in Artemia franciscana as feed for charal (Chirostoma jordani) larvae. Revista Mexicana de Ingeniería Química, 2016, 15: 809-818.

[21] Furuya, W.M., Souza, S.R.D., Furuya, V.R.B, Hayashi, C. Ribeiro, R.P. Pelletized and extrused diets for reversed nile tilapia (Oreochromis niloticus L.) males, in finishing phase. Ciência Rural, 1998, 28, 483–487. DOI:10.1590/S0103-84781998000300022

[22] Le Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology, 1951, 20: 201- 219.

[23] Zar, J. H. Biostatistical Analysis. 5th. Edition, Prentice-Hall, Inc., Upper Saddle River, New Jersey, USA. 2009, 576p.

[24] Mehdinejad, N., Imanpour, M.R., Jafari, V. Combined or Individual Effects of Dietary Probiotic Pedicoccus acidilactici and Nucleotide on Growth Performance, Intestinal Microbiota, Hemato-biochemical Parameters, and Innate Immune Response in Goldfish (Carassius auratus). Probiotics and antimicrobial proteins, 2017, 10: 558–565. DOI: 10.1007/s12602-017-9297-3

[25] Hoseinifar, S.H., Roosta, Z., Hajimoradloo, A., Vakili, F. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish & shellfish immunology, 2015, 42: 533-538. DOI:10.1016/j.fsi.2014.12.003

[26] Feng, J., Li, D., Liu, L., Tang, Y., Du, R. Characterization and comparison of the adherence and imune modulation of two gut Lactobacillus strains isolated from Paralichthys olivaceus. Aquaculture, 2019, 499: 381-388. DOI: 10.1016/j.aquaculture.2018.08.026

[27] Balcázar, J.L., Vendrell, D., Blas, I., Ruiz-Zarzuela, I., Muzquiz, J.L., Girones, O. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 2008, 278: 188–191. DOI: 10.1016/j.aquaculture.2008.03.014

[28] Lazado, C.C., Caipang, C.M.A. Mucosal immunity and probiotics in fish. Fish & Shellfish Immunology, 2014, 39: 78–89.DOI: 10.1016/j.fsi.2014.04.015

[29] Farahi, A., Kasiri, M., Sudagar, M., Alamshahi, F. Angelfish (Pterophyllum scalare Schultze, 1823) Larvae. Journal of Animal and Veterinary Advances, 2011, 10: 2305-2311.

[30] Meidong, R., Doolgindachbaporn, S., Sakai, K., Tongpim, S. Isolation and selection of lactic acid bacteria from Thai indigenous fermented foods for use as probiotics in tilapia fish Oreochromis niloticus. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux), 2017, 10: 455-463.

[31] Rendueles, O., Ferrières, L., Frétaud, M., Bégaud, E., Herbomel, P., Levraud, J.P., Ghigo, J.M. A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS pathogens, 2012, 26:e1002815. DOI: 10.1371/journal.ppat.1002815

[32] Bledsoe, J.W., Peterson, B.C., Swanson, K.S., Small, B.C. Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PloS one, 2016, 15: e0166379. DOI: 10.1371/journal.pone.0166379

Downloads

Issue

Article Type

Articles