Dietary and Nutritional Value of Fish Oil, and Fermented Products

Shweta Pandey (Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009 (U.P.), India)
Ravi Kant Upadhyay (Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009 (U.P.), India)

Article ID: 4311

DOI: https://doi.org/10.30564/jfsr.v4i1.4311

Abstract


Present review article explains the dietary and nutritional value of various fish derived natural food products. Fish is a good source of important nutrients such as proteins, fats, vitamins and minerals. Fish oil contains polyunsaturated fatty acids (PUFAs) mainly omega-3 fatty acids, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and eicosanoids. Fish contains high-quality protein ( ~ 14-16 percent) and is consumed worldwide. This article also emphasizes therapeutic uses of fish nutrients and oil in healing of wounds, hyper pigmentation, dermatitis, and in cardiovascular risks. Fish oil polyunsaturated fatty acids (PUFAs) are highly beneficial in cardiovascular problems and dermatitis. Fish oil is good for skin-related diseases such as photo-ageing and melanogenesis These also affect anticancer, wound healing and anti-depressant activity. In the present review various local, national, and international processed fish derived food currently available in the market fish dishes have been mentioned.


Keywords


Fish foods; Eicosapentaenoic acid (EPA); Docosahexaenoic acid (DHA); Dietary and therapeutic value

Full Text:

PDF

References


[1] Tacon, A.G., Metian, M., 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 285(1), 146-158.

[2] FAO/WHO., 2003. Expert Consultation. , Diet, nutrition, and the prevention of chronic diseases. World Health Organization Technical Report Series. 916, 89-90.

[3] FAO, 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. DOI: https://doi.org/10.4060/ca9229en

[4] Janet, C.Tou, Stephanie N Altman, Joseph C Gigliotti, Vagner A Benedito, Elizabeth, L., 2011. Cordonier Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats lipids Health Dis. 10, 179 DOI: https://doi.org/10.1186/1476-511X-10-179

[5] Tacon, A.G.J., Metian, M., 2017. Food matters: Fish, income, and food supply—a comparative analysis. Reviews in Fisheries Science & Aquaculture. 26(1), 15-28. DOI: https://doi.org/10.1080/23308249.2017.1328659.

[6] Tacon, A.G., Metian., M., 2013. Fish matters: Importance of aquatic foods in human nutrition and global food supply. Reviews in Fisheries Science. 21(1), 22-38. DOI: https://doi.org/10.1080/10641262.2012.753405.

[7] Madani, Z., Louchami, K., Sener, A., Malaisse, W.J., Yahia., D.A., 2012. Dietary sardine protein lowers insulin resistance, leptin and TNF-alpha and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome. Int. J. Mol. Med. 29, 311-318.

[8] Rudkowska, I., Marcotte, B., Pilon, G., Lavigne, C., Marette, A., Vohl., M.C., 2010. Fish nutrients decrease expression levels of tumor necrosis factor-alpha in cultured human macrophages. Physiol. Genomics. 40, 189-194.

[9] Díaz-Rizzolo, D.A., Serra, A., Colungo, C., Sala-Vila, A., Siso-Almirall, A., Gomis, R., 2021. Type 2 diabetes preventive effects with a 12-months sardine-enriched diet in elderly population with prediabetes: An interventional, randomized and controlled trial, Clinical Nutrition. 40(2021), 2587-2598. DOI: https://doi.org/10.1016/j.clnu.2021.03.014

[10] Balfego, M., Canivell, S., Hanzu, F.A., Sala-Vila, A., Martinez-Medina, M., Murillo, S., Mur, T., Ruano, E.G., Linares, F., Porras, N., Valladares, S., Fontalba, M., Roura, E., Novials, A., Hernandez, C., Aranda, G., Siso-Almirall, A., Rojo-Martinez, G., Simo, R., Gomis., R., 2016. Effects of sardine enriched diet on metabolic control, inflammation and gut microbiota in drug-naive patients with type 2 diabetes: A pilot randomized trial. Lipids in Health and Disease. 15, 78. DOI: https://doi.org/10.1186/s12944-016-0245-0

[11] Lavigne, C., Tremblay, F., Asselin, G., Jacques, H., Marette., A., 2001. Prevention of skeletal muscle insulin resistance by dietary cod protein in high fatfed rats. Am. J. Physio.-Endocrino. Metabo. 281, E62-E71.

[12] Ouellet, V., Marois, J., Weisnagel, S.J., Jacques., H., 2007. Dietary cod protein improves insulin sensitivity in insulin-resistant men and women. Diab. Care. 30, 2816-2821.

[13] Dort, J., Sirois, A., Leblanc, N., Cote, C.H., Jacques., H., 2012. Beneficial effects of cod protein on skeletal muscle repair following injury. Appl. Physiol. Nutr. Metabol. 37, 489-498.

[14] Malde, M.K., Bugel, S., Kristensen, M., Malde, K., Graff, I.E., Pedersen., J.I., 2010. Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutr. Metabol., 7: 61. http:// www.nutritionandmetabolism.com/content/7/1/61.

[15] Hansen, M., Thilsted, S.H., Sandstrom, B., Kongsbak, K., Larsen, T., Jensen, M., Sorensen., S.S., 1998. Calcium absorption from small soft-boned fish. J. Trace Elem. Med. Biol. 12, 148-154.

[16] Tamang, J.P., Samuel., D., 2010. Dietary cultures and

[17] antiquity of fermented food.

[18] Waisundara, V., Jayawardena, N., Watawana., M., 2016. Safety of fermented fish products. Regulating Safety of Traditional and Ethnic Foods. 149, 168.

[19] Mouritsen, O.G., Duelund, L., Calleja, G., Frost., M.B., 2017. Flavour of fermented fish, insect, game, and pea sauces: Garum revisited. International Journal of Gastronomy and Food Science. 9, 16-28. DOI: https://doi.org/10.1016/j.ijgfs.2017.05.002. 2011.

[20] Panda, S.H., Ray, R.C., El Sheikha, A.F., Montet, D., Worawattanamateeku., W., 2011. Fermented fish and fish products: An overview. Aquaculture Microbiology and Biotechnology. 2, 132-172.

[21] Fadda, S., Lopez, C., Vignolo., G., 2010. Role of lactic acid bacteria during meat conditioning and fermentation: Peptides generated as sensorial and hygienic biomarkers. Meat Science. 86(1), 66-79. DOI: https://doi.org/10.1016/j.meatsci.2010.04.023.

[22] Styger, G., Prior, B., Bauer., F.F., 2011. Wine flavor and aroma. Journal of Industrial Microbiology&Amp; Biotechnology. 38(9), 1145-1159.

[23] Zeng, X., Xia, W., Jiang, Q., Yang., F., 2013. Effect of autochthonous starter cultures on microbiological and physico-chemical characteristics of Suan Yu, a traditional Chinese low salt fermented fish. Food Control. 33(2), 344-351. DOI: https://doi.org/10.1016/j.foodcont.2013.03.001.

[24] Giri, A., Osako, K., Okamoto, A., Ohshima., T., 2010. Olfactometric characterization of aroma active compounds in fermented fish paste in comparison with fish sauce, fermented soy paste and sauce products. Food Research International. 43(4), 1027-1040. DOI: https://doi.org/10.1016/ j.foodres.2010.01.012.

[25] Lopetcharat, K., Choi, Y.J., Park, J.W., Daeschel., M.A., 2001. Fish sauce products and manufacturing: A review. Food Reviews International. 17(1), 65-88. DOI: https://doi.org/10.1081/FRI-100000515.

[26] Kasankala, L.M., Xiong, Y.L., Chen., J., 2012. Enzymatic activity and flavor compound production in fermented silver carp fish paste inoculated with douchi starter culture. Journal of Agricultural and Food Chemistry. 60(1), 226-233. DOI: https://doi.org/10.1021/jf203887x.

[27] Johansen, E., 2018. Use of natural selection and evolution to develop new starter cultures for fermented foods. Annual Review of Food Science and Technology. 9, 411-428.

[28] Giri, A., Osako, K., Ohshima., T., 2009. Extractive components and taste aspects of fermented fish pastes and bean pastes prepared using different koji molds as starters. Fisheries Science. 75(2), 481-489. DOI: https://doi.org/10.1007/s12562-009-0069-1.

[29] Zhao, D., Lu, F., Gu, S., Ding, Y., Zhou., X., 2017. Physicochemical characteristics, protein hydrolysis, and textual properties of surimi during fermentation with Actinomucor elegans. International Journal of Food Properties. 20(3), 538-548. DOI: https://doi.org/10.1080/ 10942912.2016.1168834.

[30] Zhou, X.X., Zhao, D.D., Liu, J.H., Lu, F., Ding, Y.T., 2014. Physical, chemical and microbiological characteristics of fermented surimi with Actinomucor elegans. LWT - Food Science and Technology. 59(1), 335-341. DOI: https://doi.org/10.1016/j.lwt.2014.05.04

[31] Kose, S., Hall., G.M., 2011. Sustainability of fermented fish-products. Fish Processing-Sustainability and new opportunities. Surrey: Leatherhead Publishing. pp. 138-166.

[32] Nie, X., Lin, S., Meng., X., 2016. Identification of two selected lactic acid bacteria strains isolated from dry-cured fish and their behaviors in fermented fish sausage. Journal of Fisheries Sciences. 10(1), 47.

[33] Riebroy, S., Benjakul, S., Visessanguan., W., 2008. Properties and acceptability of som-fug, a Thai fermented fish mince, inoculated with lactic acid bacteria starters. LWT - Food Science and Technology. 41(4), 569-580. DOI: https://doi.org/10.1016/j.lwt.2007.04.014.

[34] Semjonovs, P., Auzina, L., Upite, D., Grube, M., Shvirksts, K., Linde, R., Denina, I., Bormanis, A., Upitis, A., Ruklisha, M., et al., 2015. Application of Bifidobacterium animalis subsp. lactis as starter culture for fermentation of Baltic herring (Clupea harengus membras) mince. American Journal of Food Technology. 10(5), 184-194.

[35] Yin, L.J., Pan, C.L., Jiang., S.T., 2002. New technology for producing paste-like fish products using lactic acid bacteria fermentation. Journal of Food Science. 67(8), 3114-3118.

[36] DOI: https://doi.org/10.1111/j.13652621.2002.tb08867.x.

[37] Zeng, X., Xia, W., Jiang, Q., Guan, L., 2015. Biochemical and sensory characteristics of whole carp inoculated with autochthonous starter cultures. Journal of Aquatic Food Product Technology. 24(1), 52-67. DOI: https://doi.org/10.1080/10498850.2012.754535.

[38] Lee, C.H., 1997. Lactic acid fermented foods and their benefits in Asia. Food Control. 8(5-6), 259-269. DOI: https://doi.org/10.1016/S0956-7135(97)00015-7.

[39] Paludan-M€uller, C., Madsen, M., Sophanodora, P., Gram, L., Møller., P.L., 2002. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. International Journal of Food Microbiology. 73(1), 61-70. DOI: https://doi.org/10.1016/S0168-1605(01)00688-2.

[40] Aquerreta, Y., Astiasaran, I., Bello., J., 2002. Use of exogenous enzymes to elaborate the roman fish sauce‘garum’. Journal of the Science of Food and Agriculture. 82(1), 107-112.

[41] DOI: https://doi.org/10.1002/ jsfa.1013.

[42] Rajauria, G., Sharma, S., Emerald, M., Jaiswal., A.K., 2016. Novel fermented marine-based products novel food fermentation technologies. Cham: Springer. pp. 235-262.

[43] Smriga, M., Mizukoshi, T., Iwahata, D., Eto, S., Miyano, H., Kimura, T., Curtis, R.I., 2010. Amino acids and minerals in ancient remnants of fish sauce (garum) sampled in the “Garum shop” of Pompeii, Italy. Journal of Food Composition and Analysis. 23(5), 442-446. DOI: https://doi.org/10.1016/j.jfca.2010.03.005.

[44] Kobayashi, T., Kimura, B., Fujii, T., 2000. Strictly anaerobic halophiles isolated from canned Swedish fermented herrings(Surstr€omming). International Journal of Food Microbiology. 54(1-2), 81-89. DOI: https://doi.org/10.1016/S0168-1605(99)00172-5.

[45] Amilien, V., Hegnes, A.W., 2004. The cultural smell of fermented fish-About the development of a local product in Norway. Journal of Food Agriculture and Environment. 2, 141-147.

[46] Oguntoyinbo, F.A., 2014. Safety challenges associated with traditional foods of west Africa. Food Reviews International. 30(4), 338-358. DOI: https://doi.org/10.1080/87559129.2014.940086.

[47] Sanni, A., Asiedu, M., Ayernor, G., 2002. Microflora and chemical composition of momoni, a Ghanaian fermented fish condiment. Journal of Food Composition and Analysis. 15(5), 577-583.

[48] DOI: https://doi.org/10.1006/jfca.2002.1063.

[49] Daroonpunt, R., Itoh, T., Kudo, T., Ohkuma, M., Tanasupawat, S., 2016. Bacillus piscicola sp. nov., isolated from Thai fish sauce (NamPla). International Journal of Systematic and Evolutionary Microbiology. 66(3), 1151-1155. DOI: https://doi.org/10.1099/ijsem.0.000851.

[50] Ahmad, W.A.W., 2014. A study of hygiene practices, microbiological and chemical analysis of Kelantan fermented fish sauce (Budu). Jeli, Malaysia: Universiti Malaysia Kelantan.

[51] Elegado, F.B., Colegio, S.M.T., Lim, V.M.T., Gervasio, A.T.R., Perez, M.T.M., Balolong, M.P., et al., 2016. Ethnic fermented foods of the Philippines with reference to lactic acid bacteria and yeasts. Ethnic fermented foods and alcoholic beverages of Asia. New Delhi: Springer. pp. 323-340.

[52] Fatimah, F., Pelalu, J., Gugule, S., Yempormase, H.V., Tallei., T.E., 2017. Quality evaluation of Bakasang processed with variation of salt concentration, temperature and fermentation time. Pakistan Journal of Biological Sciences. 2, 543-551. DOI: https://doi.org/10.3923/pjbs.2017.543.551.

[53] Wang, Y., Li, C., Li, L., Yang, X., Wu, Y., Zhao, Y., Wei., Y., 2018. Effect of bacterial community and free amino acids on the content of biogenic amines during fermentation of Yu-lu, a Chinese fermented fish sauce. Journal of Aquatic Food Product Technology. 27(4), 496-507. DOI: https://doi.org/10.1080/10498850.2018.1450573.

[54] Kopermsub, P., Yunchalard., S., 2010. Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. International Journal of Food Microbiology. 138(3), 200-204.

[55] Majumdar, R.K., Roy, D., Bejjanki, S., Bhaskar., N., 2016. Chemical and microbial properties of shidal, a traditional fermented fish of northeast India. Journal of Food Science and Technology. 53(1), 401-410. DOI: https://doi.org/10.1007/s13197-015-1944-7.

[56] Kumar, M., Jain, A.K., Ghosh, M., Ganguli., A., 2014. Characterization and optimization of an anti-aeromonas bacteriocin produced by Lactococcus lactis isolated from Hukuti Maas, an indigenous fermented fish product. Journal of Food Processing and Preservation. 38(3), 935-947. DOI: https://doi.org/10.1111/jfpp.12048.

[57] Thapa, N., Pal, J., Tamang., J.P., 2004. Microbial diversity in Ngari, Hentak and Tungtap, fermented fish products of North-East India. World Journal of Microbiology and Biotechnology. 20(6), 599. DOI: https://doi.org/10.1023/B:WIBI.0000043171.91027.7e.

[58] Miyake, Y., Ito, C., Itoigawa, M., Osawa., T., 2009. Antioxidants produced by Eurotium herbariorum of filamentous fungi used for the manufacture of karebushi, dried bonito (Katsuobushi). Bioscience, Biotechnology, and Biochemistry. 73(6), 1323-1327. DOI: https://doi.org/10.1271/ bbb.80887.

[59] Lin, W.F., Hwang, D.F., 2008. Application of species-specific PCR for the identification of dried bonito product (Katsuobushi). Food Chemistry. 106(1), 390-396. DOI: https://doi.org/10.1016/j.foodchem.2007.05.060.

[60] Najafian, L., Babji., A.S., 2018. Fractionation and identification of novel antioxidant peptides from fermented fish (Pekasam). Journal of Food Measurement and Characterization. 12(3), 2174-2183. DOI: https://doi.org/10.1007/s11694-018-9833-1.

[61] Kaikkonen, J., Tuomainen, T.P., Nyyss€onen, K., Salonen., J.T., 2002. Coenzyme Q10: Absorption, antioxidative properties, determinants, and plasma levels. Free Radical Research. 36(4), 389-397. DOI: https://doi.org/10.1080/10715760290021234

[62] Martınez-Alvarez, O., Lopez-Caballero, M., Gomez-Guillen, M., Montero., P., 2016. Fermented seafood products and health, In Fermented foods in health and disease prevention. 177-202.

[63] Mortensen, S.A., Rosenfeldt, F., Kumar, A., Dolliner, P., Filipiak, K.J., Pella, D., Alehagen, U., Steurer, G., Littarru., G.P., 2014. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: A randomized double-blind trial. JACC Heart Failure. 2(6), 641-649. DOI: https://doi.org/10.1016/j.jchf.2014.06.008.

[64] Kumar, A., Kaur, H., Devi, P., Mohan., V., 2009. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and meniere-like syndrome. Pharmacology & Therapeutics. 124(3), 259-268.

[65] DOI: https://doi.org/10.1016/ j.pharmthera.2009.07.003.

[66] Shults, C.W., Haas, R.H., Beal., M.F., 1999. A possible role of coenzyme Q10 in the etiology and treatment of Parkinson’s disease. Biofactors (Oxford, England). 9(2-4), 267-72.

[67] Portakal, O., €Ozkaya, €.O., Erden I_Nal, M., Bozan, B., Kos¸an, M., Sayek., I., 2000. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clinical Biochemistry. 33(4),279-284. DOI: https://doi.org/10.1016/S0009-9120(00)00067-9.

[68] Fujita, H., Yamagami, T., Ohshima., K., 2001. Effects of an aceinhibitory agent, Katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects1. Nutrition Research. 21(8), 1149-1158. DOI: https://doi.org/10.1016/S02715317(01)00333-5.

[69] Kuroda, M., Ishizaki, T., Maruyama, T., Takatsuka, Y., Kuboki., T., 2007. Effect of dried-bonito broth on mental fatigue and mental task performance in subjects with a high fatigue score. Physiology & Behavior. 92(5), 957-962. DOI: https://doi.org/10.1016/j.physbeh.2007.07.002.

[70] Koo, O.K., Lee, S.J., Chung, K.R., Jang, D.J., Yang, H.J., Kwon., D.Y., 2016. Korean traditional fermented fish products: Jeotgal. Journal of Ethnic Foods. 3(2), 107-116. DOI: https://doi.org/10.1016/j.jef.2016.06.004.

[71] Duarte, J., Vinderola, G., Ritz, B., Perdigon, G., Matar., C., 2006. Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology. 211(5), 341-350.

[72] DOI: https://doi.org/10.1016/j.imbio.2005.12.002.

[73] Singh, T.A., Devi, K.R., Ahmed, G., Jeyaram., K., 2014. Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of northeast India. Food Research International. 55, 356-362. DOI: https://doi.org/10.1016/j.foodres.2013.11.028.

[74] Ervin, R.B., Wright, J.D., Wang, C.Y., et al., 2004. Dietary intake of fats and fatty acids for the United States population: 1999-2000. Advance Data from Vital and Health Statistics, National Center for Health Statistics, Centers for Disease Control and Prevention. Nov 8, 1-6.

[75] Villani, A.M., Crotty, M., Cleland, L.G., James, M.J., Fraser, R.J., Cobiac, L., Miller, M.D., 2013. Fish oil administration in older adults: Is there potential for adverse events? A systematic review of the literature. BMC Geriatr. 13, 41.

[76] Fry, J.P., Love, D.C., 2013. Environmental Public Health and Recommendations For Fish Oil and Seafood Intake. American Journal of Public Health. 103(11).

[77] Watters, C.A., Edmonds, C.M., Rosner, L.S., Sloss, K.P., Leung, P., 2012. A cost analysis of EPA and DHA in fish, supplements and foods. J Nutr Food Sci. 2(8), 1-5.

[78] Roncaglioni, M.C., Tombesi, M., Avanzini, F., Barlera, S., Caimi, V., Longoni, P., Marzona, I., Milani, V., Silletta, M.G., Tognoni, G., Marchioli, R., 2013. n-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 368(19), 1800-1808.

[79] Harris, W.S., 2004. Fish Oil Supplementation: Evidence for Health Benefits. Cleveland Clinic Journal of Medicine. 71(3), 208-221.

[80] Boxshall, G.A., Mees, J., Costello, M.J., Hernandez, F., Gofas, S., et al., 2014. World Register of Marine Species. Available from: www.marinespecies.org. Accessed 2014-12-11.

[81] NLM. 2014. Fish Oil. Medline Plus. National Institutes of Health, National Library of Medicine. Available at: http://www.nlm.nih.gov/medlineplus/druginfo/natural/993.html.

[82] Rizliya, V., Mendis, E., 2014. Biological, Physical, and Chemical Properties of Fish Oil and Industrial Applications. In Seafood Processing By-Products. Springer, New York. pp. 285-313.

[83] Fréon, P., Sueiro, J.C., Iriarte, F., Evar, O.F.M., Landa, Y., Mittaine, J.F., Bouchon, M., 2014. Harvesting for food versus feed: a review of Peruvian fisheries in a global context. Reviews in fish biology and fisheries. 24(1), 381-398.

[84] Nathan, A.N., Bennett Philippe Le Billon, J., Stephanie, J., 2021. Green Andrés M.Cisneros-Montemayor SandraAmongin Noella J.Gray, U. RashidSumaila Oil, fisheries and coastal communities: A review of impacts on the environment, livelihoods, space and governance, Energy Research & Social Science. 75(1), 102009.

[85] Aitta, E., Marsol-Vall, A., Damerau, A., Yang, B., 2021 Aug 5. Enzyme-Assisted Extraction of Fish Oil from Whole Fish and by-Products of Baltic Herring (Clupea harengus membras). Foods. 10(8), 1811. DOI: https://doi.org/10.3390/foods10081811.

[86] Moffat, C.F., McGill, A.S., 1993. Variability of the composition of fish oils: significance for the diet. Proceedings of the Nutrition Society. 52(03), 441-456.

[87] Mayo Clinic. 2013. Omega-3 Fatty Acids, Fish Oil, Alpha-linolenic acid - Safety. Prepared by the Natural Standard Research Collaboration. Available at: http://www.mayoclinic.org/drugs-supplements/omega-3-fatty-acids-fish-oil-alpha-linolenic-acid/safety/hrb-20059372

[88] Pike, I.H., Jackson, A., 2010. Fish oil: production and use now and in the future. Lipid Technology. 22(3), 59-61.

[89] Kidd, P.M., 2013. Omega-3 DHA and EPA for Cognition, Behavior, and Mood: Clinical Findings and Structural-Functional Synergies with Cell Membrane Phospholipids. Alternative Medicine Review. 12(3), 207-227.

[90] Farooqui, A.A., 2009. Beneficial effects of fish oil on human brain. New York: Springer. pp. 151-187.

[91] Kim, S., Venkatesan, J., 2014. Introduction to Seafood processing By-products. In Seafood Processing By- Products. Springer, New York. pp. 1-10.

[92] Karadeniz, F., Kim, S., 2014. Trends in the Use of Seafood processing By-products in Europe. In Seafood Processing By-Products. Springer, New York. pp. 11-20.

[93] U.S. EPA. 1995, Fish Processing. AP 42 - Compilation of Air Pollutant Emission Factors, 5th Edition,Volume 1, Chapter 9.13.1. Technology Transfer Network, U.S. Environmental Protection Agency.

[94] U.S. FDA. April 2011. Fish and Fishery Products Hazards and Controls Guidance. Fourth Edition.

[95] Maes, J., De Meulenaer, B., Van Heerswynghels, P., De Greyt, W., Eppe, G., De Pauw, E., Huyghebaert, A., 2005. Removal of dioxins and PCB from fish oil by activated carbon and its influence on the nutritional quality of the oil. Journal of the American Oil Chemists’ Society. 82(8), 593-597.

[96] Keogh, M.K., O’Kennedy, B.T., Kelly, J., Auty, M.A., Kelly, P.M., Fureby, A., Haahr, A.M., 2001. Stability to Oxidation of Spray‐Dried Fish Oil Powder Microencapsulated Using Milk Ingredients. Journal of Food Science. 66(2), 217-224.

[97] Chee, K.M., Gong, J.X., Rees, D.M., Meydani, M., Ausman, L., Johnson, J., Siguel, E.N., Schaefer, E.J., 1990. Fatty acid content of marine oil capsules. Lipids 25, 523-528.

[98] Health Canada., 2007. Novel Food Information -Microencapsulated Fish Oil (MFO). Health Canada. Available at: http://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/nf-an103decdoc-eng.p

[99] Wu, D., Chen, X., Cao, F., Sun, D.W., He, Y., Jiang,Y., 2014. Comparison of infrared spectroscopy and nuclear magnetic resonance techniques in tandem with multivariable selection for rapid determination of ω-3 polyunsaturated fatty acids in fish oil. Food Bioprocess Technol. 7, 1555-1569.

[100] Kumari, P., Kumar, M., Gupta, V., Reddy, C.R.K., Jha, B., 2010. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chemistry. 120(3), 749-757.

[101] Jenkins, D.J., Sievenpiper, J.L., Pauly, D., Sumaila, U.R., Kendall, C.W., Mowat, F.M., 2009. Are dietary recommendations for the use of fish oils sustainable? Canadian Medical Association Journal. 180(6), 633-637.

[102] Ruxton, C.H.S., Reed, S.C., Simpson, M.J.A., Millington, K.J., 2004. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics. 17(5),449-823, 459.

[103] Hardy, M.S., Kekic, A., Graybill, N.L., Lancaster, Z.R., 2016. A systematic review of the association between fish oil supplementation and the development of asthma exacerbations. SAGEOpenMed. 4, 2050312116666216.

[104] Eslick, G.D., Howe, P.R., Smith, C., Priest, R., Bensoussan, A.,2009. Benefits of fish oil supplementation in hyperlipidemia: ,A systematic review and meta-analysis. Int. J.Cardiol. 136, 4-16.

[105] Balk, E.M., Lichtenstein, A.H., 2017. Omega-3 fatty acids and cardiovascular disease: Summary of the agency of healthcare research and quality evidence review. Nutrients. 9, 865.

[106] Gao, H., Geng, T., Huang, T., Zhao, Q., 2017. Fish oil supplementation and insulin sensitivity: A systematic review and meta-analysis. Lipids Health Dis. 16, 131.

[107] Laviano, A., Rianda, S., Molfino, A., Rossi Fanelli, F., 2013. Omega-3 fatty acids in cancer. Curr. Opin. Clin. Nutr. Metab. Care. 16, 156-161.

[108] Larsson, S.C., Kumlin,M., Ingelman-Sundberg, M.,Wolk, A.,2004. Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. Am. J. Clin. Nutr.79,935-945.

[109] Burt, S., 2004. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 94, 223-253.

[110] Calder, P.C., 2010. Rationale and use of n-3 fatty acids in artificial nutrition. Proc. Nutr. Soc. 69, 565-573.

[111] Abbasoglu, O., Hardy, G., Manzanares, W., Pontes-Arruda, A., 2018. Fish oil-containing lipid emulsions in adult parenteral nutrition: A review of the evidence. J. Parenter. Enteral. Nutr.

[112] Lambertsen, N., 1978. Fatty acid composition of fish fats. Comparisons based on eight fatty acids. Fisk. Dir. Skr. Ser. Ernæring. 1, 105-116.

[113] Meguro, S., Arai, Y., Masukawa, Y., Uie, K.,Tokimitsu, I., 2000. Relationship between covalently bound ceramides and transepidermal water loss (TEWL). Arch. Dermatol. Res. 292, 463-468.

[114] Ekanayake-Mudiyanselage, S., Aschauer, H.,Schmook, F.P., Jensen, J.M., Meingassner, J.G., Proksch, E., 1998. Expression of epidermal keratins and the cornifie denvelope protein in volucrin is

[115] influenced by permeability barrier disruption. J. Investig. Dermatol. 111, 517-523.

[116] Ilievska, B., Loftsson, T., Hjalmarsdottir, M.A.,Asgrimsdottir, G.M., 2016. Topical formulation comprising fatty acid extract from cod liver oil: Development, evaluation and stability studies. Mar. Drugs. 14, 105.

[117] Fodor, J.G., Helis, E., Yazdekhasti, N., Vohnout, B., 2014. “Fishing” for the origins of the “Eskimos and heart disease” story: Facts or wishful thinking? Can. J. Cardiol. 30, 864-868.

[118] Kris-Etherton, P.M., Harris, W.S., Appel, L.J., et al., 2002. American Heart Association, Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 106,2747-2757.

[119] Gebauer, S.K., Psota, T.L., Harris, W.S., Kris-Etherton, P.M., 2006. n- 3 fatty acid dietary 706 recommendations and food sources to achieve essentiality and cardiovascular benefits. The American Journal of Clinical Nutrition. 83(6), S1526-1535S.

[120] Greene, J., Ashburn, S.M., Razzouk, L., Smith, D.A., 2013. Fish oils, coronary heart disease, and the environment. American journal of public health. 103(9), 1568-1576.

[121] Frishman, W.H., Sonnenblick, E.H., Sica, D.A., 2003. Cardiovascular Pharmacotherapeutics. 2. New York, NY: McGraw Hill. pp. 382.

[122] Arita, M., Oh, S., Chonan, T., et al., 2006. Metabolic inactivation of resolvin E1 and stabilization of its antiinflammatory actions. J Biol Chem. 281, 22847-22854.

[123] Eslick, G.D., Howe, P.R., Smith, C., Priest, R., Bensoussan, A.,2009. Benefits of fish oil supplementation in hyperlipidemia: A systematic review and meta-analysis. Int. J.Cardiol. 136, 4-16.

[124] Balk, E.M., Lichtenstein, A.H., 2017. Omega-3 fatty acids and cardiovascular disease: Summary of the agency of healthcare research and quality evidence review. Nutrients. 9, 865.

[125] Rizos, E.C., Ntzani, E.E., Bika, E., Kostapanos, M.S., Elisaf, M.S., 2012. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta- analysis. JAMA. 308(10), 1024-1033.

[126] De Gruijl, F.R., 2017. UV adaptation:, Pigmentation and protection against overexposure. Exp. Dermatol. 26, 557-562.

[127] Wagener, F.A., Carels, C.E., Lundvig, D.M., 2013. Targeting the redox balance in inflammatory skin conditions. Int. J. Mol. Sci. 14, 9126-9167.

[128] Rundhaug, J.E., Fischer, S.M., 2008. Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem. Photobiol. 84, 322-329.

[129] Calder, P.C., 2012. Mechanisms of action of (n-3) fatty acids. J. Nutr. 142, 592S-599S.

[130] Pilkington, S.M., Watson, R.E., Nicolaou, A., Rhodes, L.E., 2011. Omega-3 polyunsaturated fatty acids: Photoprotective macronutrients. Exp. Dermatol. 20, 537-543.

[131] Pernet, I., Sagot, V., Schmitt, D., Viac, J., 1999. UVA1 and UVB radiation but not PGE2 stimulate IL-8 release in normal human keratinocytes. Arch. Dermatol. Res. 291, 527-529.

[132] Serini, S., Donato, V., Piccioni, E., Trombino, S.,Monego, G., Toesca, A., Innocenti, I., Missori, M., De Spirito, M., Celleno, L., Fasano, E., Ranelletti, F.O., Calviello, G., 2011. Docosahexaenoic acid reverts resistance to UV-induced apoptosis in human keratinocytes: Involvement of COX-2 and HuR. J. Nutr. Biochem. 22, 874-885.

[133] Amano, S., 2016. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp. Dermatol. 25(Suppl. 3), 14-19.

[134] Kim, H.H., Shin, C.M., Park, C.H., Kim, K.H., Cho, K.H., Eun, H.C., Chung, J.H., 2005. Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J. Lipid Res. 46, 1712-1720.

[135] Danno, K., Ikai, K., Imamura, S., 1993. Anti-inflammatory effects of eicosapentaenoic acid on experimental skin inflammation models. Arch. Dermatol. Res. 285, 432-435.

[136] Rahman, M., Kundu, J.K., Shin, J.W., Na, H.K., Surh, Y.J., 2011. Docosahexaenoic acid inhibits UVB-induced activation of NF-κB and expression of COX-2 and NOX-4 in HR-1 hairless mouse skin

[137] by blocking MSK1 signaling. PLoS One. 6, e28065.

[138] Sun, Z., Park, S.Y., Hwang, E., Park, B., Seo, S.A., Cho, J.G., Zhang, M., Yi, T.H., 2016. Dietary Foeniculumvulgare Mill extract attenuated UVB irradiation-induced skin photoaging by activating of Nrf2 and inhibiting MAPK pathways. Phytomedicine. 23, 1273-1284.

[139] Yum, H.W., Park, J., Park, H.J., Shin, J.W., Cho, Y.Y., Kim, S.J., Kang, J.X., Surh, Y.J., 2017. Endogenous ω-3 fatty acid production by fat-1 transgene and topically applied docosahexaenoic acid protect against UVB-induced mouse skin carcinogenesis. Sci. Rep. 7, 11658.

[140] Orengo, I.F., Black, H.S., Wolf, J.E., Jr., 1992. Influence of fish oil supplementation on the minimal erythema dose in humans. Arch. Dermatol. Res. 284, 219-221.

[141] Rhodes, L.E., Durham, B.H., Fraser, W.D., Friedmann, P.S., 1995. Dietary fish oil reduces basal and ultraviolet B-generated PGE2 levels in skin and increases the threshold to provocation of polymorphic light eruption. J. Investig. Dermatol. 105, 532-535.

[142] Takemura, N., Takahashi, K., Tanaka, H., Ihara, Y., Ikemoto, A., Fujii, Y., Okuyama, H., 2002. Dietary, but not topical, alpha-linolenic acid suppresses UVB-induced skin injury in hairless mice when compared with linoleic acids. Photochem. Photobiol. 76, 657-663.

[143] Molho-Pessach, V., Lotem, M., 2007. Ultraviolet radiation and cutaneous carcinogenesis. Curr. Probl. Dermatol. 35, 14-27.

[144] D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., Scott, T., 2013. UV radiation and the skin. Int. J. Mol. Sci. 14, 12222-12248.

[145] Nikolakopoulou, Z., Shaikh, M.H., Dehlawi, H., Michael-Titus, A.T., Parkinson, E.K., 2013. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin. Toxicol. Lett. 218, 150-158.

[146] Richards, H., Thomas, C.P., Bowen, J.L., Heard, C.M., 2006. In-vitro transcutaneous delivery of ketoprofen and polyunsaturated fatty acids from apluroniclecithin organogel vehicle containing fish oil. J.Pharm. Pharmacol. 58, 903-908.

[147] Rehman, K., Mohd Amin, M.C., Yuen, N.P., Zulfakar, M.H., 2016. Immunomodulatory effectiveness of fish oil and omega-3 fatty acids in human non-melanoma skin carcinoma cells. J. Oleo Sci.

[148] , 217-224.

[149] Rehman K., Zulfakar, M.H., 2017. Novel fish oilbased bigel system for controlled drug delivery and its influence on immunomodulatory activity of imiquimod against skin cancer. Pharm. Res. 34, 36-48.

[150] Ramesh, G., Das, U.N., 1998. Effect of evening primrose and fish oils on two stage skin carcinogenesis in mice. Prostaglandins Leukot. Essent. Fatty Acids. 59, 155-161.

[151] Lou, Y.R., Peng, Q.Y., Li, T., Medvecky, C.M., Lin, Y., Shih, W.J., Conney, A.H., Shapses, S., Wagner, G.C., Lu, Y.P., 2011. Effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis. 32, 1078-1084.

[152] Fortes, C., Mastroeni, S., Melchi, F., Pilla, M.A., Antonelli, G., Camaioni, D., Alotto, M., Pasquini, P., 2008. A protective effect of the Mediterranean diet for cutaneous melanoma. Int. J. Epidemiol. 37,1018-1029.

[153] Bradley, M.O., Swindell, C.S., Anthony, F.H., Wit-man, P.A., Devanesan, P., Webb, N.L., Baker, S.D., Wolff, A.C., Donehower, R.C., 2001. Tumor targeting by conjugation of DHA to paclitaxel. J.Control. 74, 233-236.

[154] Fang, Y.P., Yang, S.H., Lee, C.H., Aljuffali, I.A., Kao, H.C., Fang, J.Y., 2016. What is the discrepancy between drug permeation into/across intact and diseased skins? Atopic dermatitis as a model. Int. J.Pharm. 497, 277-286.

[155] Barcelos, R.C., de Mello-Sampayo, C., Antoniazzi, C.T., Segat, H.J., Silva, H., Veit, J.C., Piccolo, J., Emanuelli, T., Bürger, M.E., Silva-Lima, B., et al., 2015. Oral supplementation with fish oil reduces dryness and pruritus in the acetone-induced dry skin rat model. J. Dermatol. Sci. 79, 298-304.

[156] Weise, C., Heunemann, C., Loddenkemper, C., Herz, U., vanTol, E.A., Worm, M., 2011. Dietary docosahexaenoic acid in combination with arachidonic acid ameliorates allergen-induced dermatitis

[157] in mice. Pediatr. AllergyImmunol. 22, 497-504.

[158] Chung, S., Kong, S., Seong, K., Cho, Y., 2002. γ-Linolenic acid in borage oil reverses epidermal hyperproliferation in guinea pigs. J. Nutr. 132, 3090-3097.

[159] Brosche, T., Platt, D., 2000. Effect of borage oil consumption on fatty acid metabolism, transepidermal water loss and skin parameters in elderly people. Arch. Gerontol. Geriatr. 30, 139-150.

[160] Lordani, T.V.A., de Lara, C.E., Ferreira, F.B.P., de Souza Terron Monich, M., Mesquita da Silva, C., Felicetti Lordani, C.R., Giacomini Bueno, F., Vieira Teixeira, J.J., Lonardoni, M.V.C., 2018. Therapeutic effects of medicinal plants on cutaneous wound healing in humans: A systematic review. MediatorsInflamm. 7354250.

[161] Baum, C.L., Arpey, C.J., 2005. Normal cutaneous wound healing: Clinical correlation with cellular and molecular events. Dermatol. Surg. 31, 674-686.

[162] Calder, P.C., 2013. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 75, 645-662.

[163] Kiecolt-Glaser, J.K., Glaser, R., Christian, L.M., 2014. Omega-3 fatty acids and stress-induced immune regulation: Implications for wound healing. Mil. Med. 179(Suppl. 11), 129-133.

[164] Shingel, K.I., Faure, M.P., Azoulay, L., Roberge, C., Deckelbaum, R.J., 2008. Solid emulsion gel as a vehicle for delivery of polyunsaturated fatty acids: Implications for tissue repair, dermal angiogenesis and wound healing. J. Tissue Eng. Regen. Med. 2,383-393.

[165] Arantes, E.L., Dragano, N., Ramalho, A., Vitorino, D., de-Souza, G.F., Lima, M.H., Velloso, L.A., Araújo, E.P., 2016.Topical docosahexaenoic acid (DHA) accelerates skin wound healing in rats and activates GPR120. Biol. Res. Nurs. 18, 411-419.

[166] Kondo, T., Hearing, V.J., 2011. Update on there gulation of mammalian melanocyte function and skin pigmentation. Expert Rev. Dermatol. 6, 97-108.

[167] Ando, H., Kondoh, H., Ichihashi, M., Hearing, V.J., 2007. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J. Investig. Dermatol. 127, 751-761.

[168] D’Mello, S.A., Finlay, G.J., Baguley, B.C., 2016. Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17, 1144.

[169] Ando, H., Ryu, A., Hashimoto, A., Oka, M., Ichihashi, M., 1998. Linoleic acid and α-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch. Dermatol. Res. 290, 375-381.

[170] Shigeta, Y., Imanaka, H., Ando, H., Ryu, A., Oku, N., Baba, N., Makino, T., 2004. Skin whitening effect of linoleic acid is enhanced by liposomal formulations. Biol. Pharm. Bull. 27, 591-594.

[171] Borsini, A., Alboni, S., Horowitz, M.A., Tojo, L.M., Cannazza, G., Su, K.P., Pariante, C.M., Zunszain, P.A., 2017. Rescue of IL-1 β -induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants, Brain Behav Immun. 65, 230-238. DOI: https://doi.org/10.1016/j.bbi. 2017.05.006.28529072

[172] DeRubeis, R.J., Hollon, S.D., Amsterdam, J.D., Shelton, R.C., Young, P.R., Salomon, R.M., O’Reardon, J.P., Lovett, M.L., Gladis, M.M., Brown, L.L., Gallop, R., 2005. Cognitive therapy vs medications in the treatment of moderate to severe depression, Arch Gen Psychiatry. 62, 409-416. DOI: https://doi.org/10.1001/archpsyc.62.4.409.15809408

[173] Lin, P.Y., Su, K.P., 2007. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids, J Clin Psychiatry. 68, 1056-1061. DOI: https://doi.org/10.4088/JCP.v68n0712.17685742

[174] Mansoor, D., Burhania, Mark, M., 2017. Rasenicka, Fish oil and depression: The skinny on fats, J Integr Neurosci. 16(Suppl 1), S115-S124. DOI: https://doi.org/10.3233/JIN-170072.

[175] Mischoulon, D., 2011. The impact of omega-3 fatty acids on depressive disorders and suicidality: Can we reconcile 2 studies with seemingly contradictory results? J Clin Psychiatry. 72, 1574-1576. DOI: https://doi.org/10.4088/JCP.11com07463.22244020

[176] Czysz, A.H., Rasenick, M.M., 2013. G-protein signaling, lipid rafts and the possible sites of action for the antidepressant effects of n-3 polyunsaturated fatty acids, CNS Neurol Disord Drug Targets. 12,466-473.DOI: https://doi.org/10.2174/1871527311312040005.23574156

[177] Erb, S.J., Schappi, J.M., Rasenick, M.M., 2016. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein. G α s, J Biol Chem. 291, 19725-19733. DOI: https://doi.org/10.1074/jbc.M116.727263. 27432886

[178] Ethan, J., Anderson, Kathleen A., Thayne, Mitchel Harris, Saame Raza Shaikh, Timothy M. Darden, Daniel S. Lark, John Mark Williams, W. Randolph Chitwood, Alan P. Kypson, and Evelio Rodriguez,

[179] Do Fish Oil Omega-3 Fatty Acids Enhance Antioxidant Capacity and Mitochondrial Fatty Acid Oxidation in Human Atrial Myocardium via PPARc Activation? ANTIOXIDANTS & REDOX SIGNALING Volume 21, Number 8, 2014 ª Mary Ann Liebert, Inc. DOI: https://doi.org/10.1089/ars.2014.5888

[180] Luostarinen, R., Wallin, R., Wibell, R., Saldeen, T., 1995. Vitamin E supplementation counteracts the fish oil-induced increase in blood glucose in humans. Nutr Res. 15, 953-968.

[181] Frankel, E.N., 1998. Lipid oxidation. Dundee, Scotland: The Oily Press Ltd.

[182] Mori, T.A., 2004. Effect of fishand fish oil-derived omega-3fattyacids on lipid oxidation. Redox Rep. 9, 193-197.

[183] Mazza, M., Pomponi, M., Janiri, L., Bria, P., Mazza, S., 2007. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry. 31, 12-26.

[184] Saldeen, T., Engstrom, K., Jokela, R., Wallin, R., 1999. Importance of in vitro stability for in vivo effects of fish oil. In: Cambridge, UK: Natural antioxidants and anticarcinogens in nutrition, health and disease. Special Publication. 240, 326-330.

[185] Saldeen, A.S., Yang, B., Chen, L., Engström, K., Mehta, J.L., Saldeen, T., 1997. Importance of long chain fatty acids and antioxidants in fish oils for their effect on vascular tissue and brain. J Investig Med. 45, 209A.


Refbacks

  • There are currently no refbacks.
Copyright © 2022 Shweta Pandey, Ravi Kant Upadhyay


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.