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1. Introduction

The theory of fractals finds application in various 
fields of scientific knowledge, including in the sciences 
of human society [1-3]. Self-similarity is one of the 
main properties of fractals. The definition of a fractal, 
given by the founder of the theory of fractal geometry, 
B. Mandelbrot, is quoted as follows: “A fractal is a 
structure consisting of parts that are in a sense similar 
to the whole” [3]. Global living systems, by which we 
mean primarily humanity and the animal world, are self-

organizing dynamic biological systems with various 
hierarchical levels - species, populations, generations, 
individual representatives of a species, functional systems 
of an individual organism, its organs, tissues, cells. 
Modeling the development of living dynamic systems 
(LDS) of various levels from a unified methodological 
standpoint can be attributed to one of the tasks of the 
fractal-synergetic approach, represented, in particular, as 
a universal theory of evolution, suggesting the similarity 
of the processes of emergence and development of 
complex, open, nonequilibrium systems of various 
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hierarchical levels and nature [2,4,5]. Fractality of DS has 
great predictive potential. A living dynamic system is 
self-organizing in the form of a system of coordinatedly 
interacting structural elements, such as, for example, 
human society - in the form of a state and its structures, 
and can be that fractal, the evolution of which is similar 
to the evolution of both its subsystems and systems of a 
higher structural level. In the mathematical formulation, 
the DS is considered given if its characteristics are known 
that uniquely determine its state, and a mathematical 
model of the evolution of the state of the system in time is 
determined [6].

Earlier in the works [7-12], the similarity of the dynamics 
of aging of populations of humans, some species of 
animals and the fruit fly, described by the mathematical 
model of the kinetic theory of aging [7,8], was illustrated.

The aim of this work is to assess the similarity of aging 
in the characteristics of living dynamic systems of human 
society and its structural elements.

2. Research Method

Aging is the most important characteristic of the 
evolution of any IDA. Aging processes are most studied 
for the characteristics of the dynamic systems of human 
society.

Below we consider the similarity of mathematical 
models of aging of systems of various hierarchical 
levels of human society, based on the basic model of the 
kinetic theory of aging, considered in [7,8,12]. First, the 
main the provisions of the kinetic theory of aging are 
briefly outlined, and then, using individual examples, the 
invariance of the basic mathematical model for describing 
the evolution of various aging characteristics of dynamic 
systems, ranging from humanity as a whole and ending 
with cancer cells of the human body, is illustrated.

In the initial theoretical concept of the phenomen-
ological kinetic theory of aging of living systems within 
their life cycle, a basic mathematical model of aging in 
general form was formulated. The main postulate of the 
kinetic theory is the assertion that the state of a dynamic 
system is determined by the speeds of simultaneously 
occurring and oppositely directed processes that accelerate 
and slow down the evolution of the system.

The second postulate of this theory corresponds to the 
assumption that evolutionary processes can be adequately 
described by nonlinear equations of biochemical kinetics 
- differential equations of autocatalytic reactions, which 
represent a wide class of analytical functions that allow 
one to take into account, among other things, the feedback 
that exists in self-organizing systems [13]. The third 

provision is the scale invariance of the differential model, 
due to the representation of the time coordinate, objective 
function and model parameters in dimensionless form.

Thus, in accordance with the above, the basic kinetic 
equation of the aging rate in a dimensionless form is 
written as the rate of the “gross process” that simulates 
the evolution of a certain characteristic of the aging of the 
LDS in time by the competition of two oppositely directed 
processes [7,8]:

 (1) 
where D is the probability, that the characteristic X 

of the system will reach the current value X (τ) by some 
time τ: D (τ) = X (τ) / Xm ,X (τ = 1) = Xm is the limiting 
(maximum or minimum) value of X, achieved at the 
end of the life cycle of a railroad network; τ = Δt / Δtm - 
dimensionless time (0≤τ≤1), Δt - calendar time interval 
calculated from the beginning t0 of the development of the 
railway characteristic to the current time t, Δt = t-t0; Δtm is 
the duration of the life cycle (or its stage): Δtm = tm-t0, tm is 
the calendar time of the end of the life cycle of the railway 
system; μ is the main parameter of the “tension” of the 
system, which determines approximately the average 
rate of evolution of the characteristic X (τ) and allows, in 
principle, to take into account in time the i-th factors of 
influence of different nature, intensity and duration, i.e. μ 
(τ) = Σi μi (τ); k is a parameter reflecting the influence of 
a process that counteracts an increase in X (τ); md, r, em ≥0 
are the exponents of the terms of the right-hand side of 
the equation that determine the nature of the change in the 
components of the rate of evolution of the characteristic; 
θ is a parameter (0≤ϴ≤1), with an increase in which the 
average speed increases and tends to ∞ as ϴ → 1. All 
parameters of the model are dimensionless and, in the 
general case, can depend on the time τ. The solutions 
of Equation (1) are found by its numerical integration, 
since it does not have an analytical solution in general 
form. The terms on the right side of Equation (1) can be 
simplified depending on the nature, level of complexity 
of the described object and the required accuracy of 
interpolation and forecasting. Figure 1 illustrates the 
typical dynamics of D (τ) for variants of the parameters of 
the model (1).

 Table 1. Values of model parameters (1) for the 
calculation options shown in Figure 1.

Curve №. 1 2 3 4 5 6

1,58 1,6 1,62 1,58 1,6 1,62

40 35 40 35 40 35
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Figure 1. Examples of dependences D (τ) obtained by 
solving the kinetic Equation (1) with the parameters 

md, r, = 1; m, em = 2; θ = 0.5, for various values of the 
parameters µ ∈ [1.58; 1.62], k ∈ [35; 40], indicated in 

Table 1 [9].

Generalizing the previous results [7,8], it can be argued 
that the evolution trajectories of the characteristics of 
systems for any values of the control parameters μ, ϴ, 
k, mi tend to the attractor of the system, which in the 
investigated phase space is the point (D = 1, τ = 1) .The 
bifurcation point is the point of unstable equilibrium of 
the system, a critical state with a breakdown in adaptation, 
corresponding to the transition of dynamic equilibrium to 
evolutionary development [4,5].

3. Research Results

The results illustrating the modeling of the aging 
characteristics of dynamic systems by the invariant basic 
mathematical model (1) and its simplified modifications 
by examples require clarification.

First of all , we note that only dynamic states that are 
far from critical are considered here [7,8]. It is advisable to 
start with complex dynamic systems of generations, the 
population of individual states and humanity as a whole.

An equation of the form (1) with a certain selection of 
parameters allows calculating the cumulative function of 
mortality of generation D (the probability of death) in the 
entire range of its variation from birth to death, as well as 
calculating the intensity of mortality I = (∂D / ∂τ) / (1-D) 
(analytical approximation of the mortality rate - KS) [8,10,12]. 
In general, the function D (“life line”) is monotonically 
increasing, but at different ages with different rates (Figure 
1). The main feature of a change in a person’s life line 
is observed approximately in the first 18-20 years after 
birth, when the predominant process is the structuring of 
the body’s systems - the development of the body with 
the formation of the immune system and adaptation to 
the environment. The high intensity of mortality at birth 
decreases with age and reaches a minimum in the area of 
about 5-10 years of age, then increases and changes little 

in the areas of 18- (25-30) years. Approximately from 
30-35 years old to 75-85 years old she again increases 
approximately exponentially, and then tends to the 
final limit corresponding to the moment of death (D = 
1) [12]. The area of increasing mortality intensity in the 
interval from about 30-35 years to 75-85 years is well 
approximated by an exponent known as “Gompertz’s 
law”. The real boundaries of the characteristic age areas 
of the change in the life line are blurred and depend, first 
of all, on the geographical and climatic conditions of the 
places of residence.

The dynamics of aging characteristics of the world’s 
population as a whole, as well as of various countries of 
the world and regions of residence, is typical [7,10,12,14,15]. 
Figure 2 shows, for illustration, the dynamics of aging 
characteristics of residents of Russian regions, based on 
demographic data. 

Figure 2. Kinetics of the mortality rate I (КС) of the 
population (values increased by 106 times) in the regions 

of the Russian Federation (1–6) and the cumulative 
mortality function D for the population of the Central 

Federal District of the Russian Federation in 2015.

The curves in Figure 2 are based on demographic data 
of the Center for Demographic Research of the Russian 
School of Economics [12]: 1 - Central Federal District, 
men; 2 - Central Federal District, both sexes; 3 - Central 
Federal District, women; 4 - Krasnodar Territory, both 
sexes; 5 - Republic of Sakha (Yakutia), both sexes; 6 - 
Primorsky Territory, both sexes. Curve 7 - the result of the 
calculation according to the simplified Equation (2) (see 
below) the probability of death for the population of the 
Central Federal District with the parameters of the model 
(1): μ = 1.518; θ = 0.620; k = 4.480; Δtm = 100 years, mr = 
0; md, = mem = 1.

For example, the work [10] presents a model approxi-
mation of aging characteristics using the kinetic Equation 
(1) for the male population of Russia, Japan and Sweden 
from birth to death (Δtm = 100 years) with the parameters 
md, r, = 1, mem = 3 and the values of other parameters 
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given in Table 3.

Table 3. Values of model parameters (1) for describing the 
dynamics of aging characteristics of the male population 

of Russia, Japan and Sweden in 1990-1994.

Country μ ϴ k

Russia 2.60 0.06≤ϴ≤0.40 90.9≤k≤121.4

Japan 1.40 0.60 31.4

Sweden 1.61 0.49 41.1

It should be noted, that the description of the evolution 
of aging characteristics in the full cycle of life by Equation 
(1) with a satisfactory error at constant parameters is 
difficult because of the significant non-monotony of 
their change in childhood. In this case, it is necessary to 
introduce the dependence of the parameters on age or 
to perform the approximation by piecewise continuous 
functions, as, for example, it is done for the population 
of Russia [10]. The error of description by the model in the 
area of small ages (0-15) years can reach 30%-40%. In 
addition, the mathematical model of the dynamics of the 
full aging cycle in the form of Equation (1) is difficult 
for solving specific practical problems, for example, 
those performed in [17-19]. To improve the accuracy of the 
description and simplify the practical application, the full 
dynamics of the life line was divided into two different 
stages - the predominant growth and structuring of the 
human body systems from birth to about 25 years and 
the subsequent predominant destruction of structural 
and functional connections - “visible” aging. In [12], two 
simplified types of kinetic mathematical models of aging 
of human generations were proposed for these two stages. 
For the life line of the second “Gompertz” stage, within 
the approximate range of values 0.03˂D≤1, a simplified 
equation is proposed in comparison with the basic one (md 
= mem = 1, mr = 0):
 ∂D/∂τ = (1-D) exp (µ/(1-θD)) –k(1-D) (2)

Approximation of the results of processing demog-
raphic data of the population of different regions of the 
Russian Federation by continuous functions D (τ) and I = 
(∂D / ∂τ) / (1-D) , calculated by Equation (2) with constant 
values of parameters, is performed with an error of at least 
15% in the range 0.03≤ D≤1 (0.21≤τ≤1) (typical model 
curve 7 in Figure 2) [12].

However, not only every person is aging, but also the 
population of the state and humanity as a whole [20,21]. One 
of the integral indicators of the aging of human society 
is the calendar age of a person, averaged over all living 
beings, which increases in the observed historical time. 
For example, Figure 3 shows the predicted dynamics of 

the increase in the average age of the population, averaged 
over the whole of humanity and over the living population 
of Russia, calculated using Equation (2).

Figure 3. Dynamics of an increase in the average age of 
the population for World (lower curve) and Russia (upper 

curve) with an increase in historical time. 

In Figure 3 the following designations are introduced: 
points - data from [20], dash-dotted and dotted lines - 
respectively, the results of the calculation of this work 
with constant parameters of model (2), solid line - for 
Russia with time dependence of the parameter μ (τ) in the 
form of a harmonic function μ (τ). 

The age of a person B (t) is calculated for the world’s 
population by the formula
B (t) = [20D (τ) +22] years (3)

where: μ = 1.532; ϴ = 0.395; k = 3.78; τ = (t-1970) / 
130; 1970≤t≤2050.

For the population of Russia, two versions of the model 
were calculated - with constant parameters and with the 
dependence of the parameter μ on time τ in the form of a 
harmonic function μ (τ) = μ0 + Аsin (αD (τ)). The average 
age of Russians is calculated using the formula
B (t) = [22.5 D (τ) +25] years, (4)

where : for both options ϴ = 0.395;k = 3.78; τ = (t-1950) 
/ 120; 1950≤t≤2050; for the first variant μ = 1.532; for the 
second variant μ = 1.532 + sin (18.84D (τ)).

The “harmonious” scenario makes it possible to reflect 
more accurately the real dynamics of the average age of 
the population of Russia, which is apparently associated 
with the consequences of the Great Patriotic War, the 
collapse of the USSR, and other possible periodic 
socio-economic events. Their reasons are not analyzed 
here. The discrepancy between the results of modeling 
characteristics in comparison with the data of [20] for the 
population of the World and Russia, taking into account 
the harmonic component, is within (3-4) %, while for 
Russia, with constant model parameters, it is up to 7%.

The aging of mankind and the population of certain 
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countries of the world is also manifested in the rate of 
change in the population size - the rate of growth of 
its population decreases, and in some countries, the 
total population also decreases [14,15,21,22]. A decrease in 
population is already observed, for example, in European 
countries. This process is due to a tendency towards 
a decrease in the birth rate of the population and an 
increasing proportion of the elderly population in relation 
to the young population. In [15], the applicability of the 
mathematical model (2) was shown for describing and 
forecasting the dynamics of the population of the USA, 
China and Russia for a period of 150-200 years. The 
parameters of the model (2), the areas of its applicability 
and the equations for calculating the population of 
the countries of the world N (t) are given in Table 4. 
Examples of modeling the dynamics of the population 
size of Russia and China are shown in Figure 4 and Figure 
5. The dynamics of the population of all mankind was 
calculated in a similar way.

Figure 4. Time dependence t of the population size N (t) 
of China: points(1) - data from [22], solid and dashed lines 

(2) are the results of calculations in [15].

Figure 5. Time dependence of the population size N (t) of 
the Russian Empire (1790-1914), the RSFSR (1918-1922), 

the USSR (1922-1991) and Russia (1991-2018).

In Figure 5 the following designations are introduced 
:points (▪ ) - demographic data from works [23,24], solid 
line - results of calculation of work [15], carried out taking 
into account the losses of the population in Two World 
Wars and the collapse of the USSR in 1991. The dots 
(•) show the demographic data of only Russia, which is 
sequentially part of the Russian Empire, the RSFSR and 
the USSR.

In cases of population calculations, the function D 
(τ) is the ratio of the current population N (τ) to the 
maximum (or minimum) value of Nm that is expected 
to be achieved in the future at the end of the considered 
life cycle. To describe the complete dynamics of changes 
in the population size, the ascending and descending 
sections are stitched in the region of the maximum [15]. The 
discrepancy between the calculation results of this work 
and the comparable data of other authors is approximately 
within 5%.

Table 4. Parameters of model (2), areas of its applicability and equations for calculating the population of the countries 
of the world N (t).

Country µ q k Nm, mln. people t,year N(t), mln. people

USA 1,520 0,605 4,472 520 1700+400τ Nm× D(t), (1900-2050) г.

China
1,539 0.584 4.468 Nm1=1570 1850+200τ

Nm1× D1(t)- Nm2×D2(t), (1950-2050) г. Nm1 - 
Nm2×D2(t), (2050-2100) г.1,539 0.584 4.468 Nm2=500 1930+200τ

Russian Empire 1.520 0.675 4.472 450 1670+400τ Nm×D(t)   0,3≤τ≤0,610, (1790-1914) г.

RSFSR, USSR 1,520 0.675 4,472 450 1670+400τ Nm×[D(t) - 0,08]   0,620≤τ≤0,677, (1918-
1941) г.

USSR 1.520 0,607 4,472 450 1670+400τ Nm×D(t) 0,687≤τ≤0,802,( 1945-1991) г.

Russia 1,520 0,652 4.472 150 1740+300τ Nm×D(t) 0,837≤τ≤0,923, ( 1991-2018) г.
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Let us now move on to the lower hierarchical levels 
of organization of living systems - human functional 
systems, his organs and cells. For example, the age-
related changes in testosterone concentration (T) and basal 
metabolic rate (BMR-basal metabolic rate) were modeled 
in comparison with literature data [25,20,26] (Figure 6, Table 
5). An important feature of the application of Equation 
(1) for these cases of modeling should be noted: the rate 
of the process is considered directly as a function of the 
change in the studied characteristic from the life time:

∂Х/∂τ=  (3)
where С=const, the dimension of which corresponds to 

the dimension of the studied characteristic X.

Figure 6. Dependence of changes in the concentration 
testosterone of total (Tt -upper curve) and free (Tf- lower 

curve) with age t of a person.

In Figure 6 the following designations are introduced: 
histograms indicate the data of [26], smooth solid lines 
are the results of the corresponding model calculations 
according to formula (3) with the model parameters 
indicated in Table 5.

The discrepancy between the results of model 
calculations and the data presented by other authors, on 
average, does not exceed 5%.

Table 5. Parameters of model (3) for testosterone 
concentration and basal metabolic rate

Characteristic mi μ ϴ k C t, year
Total testosterone 

concentration,
 Тt (nmol/L)

md= mr=1, 
mem=1.5 1.52 0.52 9.5 7.53 t=110τ;18≤t≤110

Free testosterone 
concentration,
 Тf (nmol/L)

md=2, 
mr=1, 

mem=2.5
1.55 0.59 7.0 0.21 t=110τ;18≤t≤110

Basal metabolic 
rate for males,

 (kcal / m2 hour)

md= mr=1, 
mem=1.5 1.55 0.55 7.0 11.61 t=100τ;0≤t≤100

In some cases, for a comparative description of the 
development of characteristics of dynamical systems with 
a small number of sufficiently reliable quantitative data, 

starting from birth, a very simple model is successfully 
used in comparison with the presented Equation (3) and is 
its special case (μ = -∞, k = - 1):

 Х(τ)=С  (4)
This equation reflects the simple physical meaning of 

the dialectic nature of the aging process, as the probability 
of simultaneous structuring and destruction of the system, 
occurring from birth, which is realized in this equation 
as the product of the probabilities of two independent 
events simultaneously occurring in time τ - the probability 
of creating a new structure ≈τ ^ (mr) and the probability 
of her death ≈ (1-τ) ^ (mem) .This model can be used in 
practice when high accuracy of interpolation of results 
and forecast is not required. Figure 7 illustrates, by way of 
example, the applicability of such a model to describe the 
averaged probabilities of the residual functional abilities 
of some human organs. A complete schematic picture of 
such age-related loss of properties, similar for seven types 
of organs and tissues, is given in [27].

Figure 7. Dependence of the change in the average 
probability of the residual value of the lung function (L) 

and the function of the lymph nodes (LF) with the age t of 
a person.

In Figure 7 the following designations are introduced: 
the dots indicate the data of [27], the solid lines are the 
results of the model calculation according to the formula 
(4) with the following model parameters: for L (%): C = 
1.73; mr = 0.333, mem = 0.9; t = 110τ; 0≤t≤110; for FL (%): 
С = 2.64; mr = 0.650, mem = 2.5; t = 100τ; 0≤t≤100.

Modeling the dynamics of aging of healthy cells in 
the body was complicated by the fact that the author did 
not find any reliable numerical information about this in 
the literature. Nevertheless, the data of gamma therapy 
were processed on the kinetics of the death probability of 
cancerous malignant neoplasms (MNP) in ten separate 
systems and human organs, depending on the absorbed 
dose Dr under gamma irradiation, given in [28]. Taking 
into account that during gamma therapy, the radiation 



16

Journal of Geriatric Medicine | Volume 04 | Issue 01 | April 2022

power Pr can be considered constant, the dependence of 
the probability D of death of cancer cells of malignant 
neoplasms on the value of the absorbed dose Dr is a 
function directly proportional to the exposure time t (Dr = 
Prt). Taking this into account, modeling of the dynamics 
of the probability of death of cancer cells was carried out 
using a simplified model (2), in which the dimensionless 
time τ was calculated as the ratio of the current absorbed 
dose to the maximum Drm corresponding to the death of 
all cancer cells (τ = Dr / Drm = t / tm) .

Interpretation of the results of such modeling corres-
ponds to the ideology of this work, since radiation 
exposure can be considered as a factor of accelerated 
aging, taking into account also the fact that the form of 
the mathematical model when describing the aging of 
biological systems under radiation gamma irradiation does 
not change [11,29]. For example, Figure  8 shows the results 
of a model description of the dynamics of the probability 
of death of cancer cells of cancer in some systems and 
human organs, depending on the value of the absorbed 
dose of gamma radiation Dr.

Figure 8. Dependence of the change in the probability D of 
death of cancer  cells in some systems and human organs on 

the absorbed dose of gamma radiation Dr (Dr = τDrm).

In Figure 8 the following designations are introduced: 
the dashed lines denote fragmentary data from [28], 
solid lines are the results of a model calculation using 
Equation (2). Curve numbering: curve 1 - Nasoph T 3.4 
(nasopharyngeal cancer), curve 2 - Hodgkins (Hodgkin’s 
lymphoma - cancer of the lymphatic system), curve 3 - 
Prostate (prostate cancer). The parameters of the model 
(2) are as follows: for the MNP of the lymphatic system 
μ = 1.498; ϴ = 0.51; k = 3.8; τ = Dr / 20; for cancer of 
the nasopharyngeal μ = 1.497; ϴ = 0.70; k = 4.4; τ = Dr / 
130; for prostate cancer μ = 1.497; ϴ = 0.50; k = 4.1; τ = 
Dr / 26. The discrepancy between the results of the model 
calculation and work [28] is within a few percent.

The generalized results of the mathematical description 

of the dynamics of aging characteristics of biological 
systems of various hierarchies are shown in Table 6.

4. The Discussion of the Results

Differential Equation (1) was originally written as 
a general view of the basic mathematical model of the 
phenomenological kinetic theory of aging of living 
systems, the structure of which formed general ideas 
about the stress state of a person and his adaptation to the 
environment with the possibility of parametric accounting 
for the influence of factors of various nature [7-12]. 

The advantage of the model over other mathematical 
models of the aging process of systems was the idea of 
introducing dimensionless coordinates (scale invariance) 
for the characteristics and aging time, dialectical unity 
of simultaneously going processes of creation and 
destruction of structures and functions of any living 
system during its full life cycle from birth to death (or 
transition to a new state) and the assumed invariance of 
mathematical models of biochemical kinetics to describe 
the rates of competing aging processes for various 
hierarchical systems. On this basis, the invariance of the 
basic mathematical model was confirmed for describing 
the characteristics of aging of various biological species 
(fruit flies, mice, rats, dogs, horses and humans), including 
the possibility of parametric accounting for radiation and 
chemical factors of external influence [4,8,10], its generality 
in comparison with the special case of describing the 
intensity of mortality in the adult population - the 
empirical formula of Gompertz. It was also demonstrated 
that this mathematical model is promising in solving 
important practical problems in predicting the quality 
and survival time of patients after radiation therapy 
of cancer and the population with external radiation 
exposure in emergency situations [17-19]. This work was a 
conceptual continuation of the study of the invariance of 
the basic mathematical model (1) from the standpoint of 
its possible application for modeling the aging processes 
of living dynamic systems of various hierarchical levels 
and biological species. As a result of the research carried 
out here and the generalization of previous results, the 
fractality of the aging processes of dynamic systems - 
mankind, state, generations, general systems of the human 
body, its organs and cells, insects and animals of various 
species - has been illustrated. The studies were carried 
out on individual examples of the application of the basic 
mathematical model and its particular cases for modeling 
the evolution of aging characteristics of the considered 
systems in their life cycle. In order to improve the 
accuracy of the model description, the possibility of using 
the base model was demonstrated with the introduction 
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of the dependence of its main parameter μ on the aging 
time. The possibility of a significant simplification of the 
model for individual special cases of the evolution of 
aging characteristics is shown when neglecting the non-
monotonicity of the complex structure of the dynamics of 
aging in the region of the initial lifetimes of the system 
or when modeling the evolution of the system from 
birth to death for a comparative description that does not 
require a high accuracy of approximation of experimental  
data.

The results of the studies carried out in this work, as 
well as the previously mentioned published works on 
modeling the aging characteristics of living systems of 
various biological species, allow us to draw the following 
conclusions.

5. Conclusions

There is reason to believe that modeling the aging of 
characteristics of living systems of various hierarchical 
levels and nature with a single basic mathematical 
model and its simplified modifications reflects the fractal 
property of aging in living dynamic systems.
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