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Inertinite is an important type of organic maceral in coal deposits, and 
also an important geological information carrier of coal forming environ-
ments. In the southern section of the Ordos Basin, the No. 4 inertinite-rich 
coal seam of the Middle Jurassic Yan’an Formation in the Binchang Coal 
field was selected as an example to study the genetic mechanism of the 
inertinite. In this study, the results obtained from experimental tests of 
coal rock, including principal and trace elements, stable carbon isotopes, 
scanning electron microscopy, inertinite reflectance, sporopollen and 
free radical retorting methods, were analyzed. Then, the findings were 
combined with the previous understanding of the oxygen content in the 
atmosphere and ground fire characteristics, in order to discuss the genesis 
mechanism of inertinite in the No. 4 coal seam. The obtained research 
results were as follows: (1) During the coal forming period of the No. 4 
coal seam, the overall climate had been relatively dry. There were four 
relatively dry-wet climate cycles in the No.4 coal seam, which were 
controlled by the eccentricity astronomical period. The inertinite content 
were relatively high during the dry periods; (2) The temperature range 
suitable for microorganism activities during the oxidation processes was 
between 0 and 80℃ . The simulation results of the free radical concentra-
tions showed that the maximum temperature of fusain in the No. 4 coal 
seam during the process of coalification had not exceeded 300℃ , which 
was significantly higher than the temperature range of microorganism 
activities. Therefore, these were not conducive to the activities of mi-
croorganism and formation of inertinite during the coal-forming period; 
(3) The genesis temperature of the inertinite in the No. 4 coal seam was 
calculated according to the reflectance of the inertinite, which was lower 
than 400℃ . This result supported the cause of wildfire of the inertinite 
and reflected that the type of wildfire was mainly ground fire, along with 
partially surface fire. Moreover, the paleogeographic location, climatic 
conditions, atmospheric oxygen concentration, etc. of the study area 
showed that the conditions for wildfire events were in fact available; (4) 
There were dense and scattered fusinite observed in the No. 4 coal seam, 
and the thickness of cell walls were found to differ. It was speculated that 
this was related to the type of wildfire, combustion temperatures, com-
bustion timeframes, and different initial conditions of the burned objects 
during the coal forming periods.
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1. Introduction

Inertinite-rich coal deposits have been widely devel-
oped and are distributed throughout the world, among 
which Gondwana coal is the most representative type. 

Gondwana coal mainly formed during the Permian, Trias-
sic, and Jurassic in Europe, North America, East Australia, 
South Africa, India, and other regions. Among those pe-
riod, the Permian is known to have had the highest devel-
opment of Gondwana coal containing very high content 
levels of inertinite (up to 85%), and mainly composed of 
semifusinite and inertodetrinite [1-9]. The Middle- Jurassic 
coal formations of northwestern China are also rich in 
inertinite, with the majority of the coal deposits having 
more than 35% content levels, and even more than 80% in 
some case. It has been determined that the content levels 
of transitional components, such as semifusinite and iner-
todetrinite, generally range between 10% and 20% [4,10-17].

However, the genesis of inertinite in coal has been dis-
puted for a long period of time[1,2,18-19]. As early as the 20th 
century, there have been two main genetic views: primary 
inertinite and  secondary inertinite [1,20]. 

The primary inertinite is a product resulting from a 
series of oxidation processes of peat, such as strong oxi-
dation and alteration, dehydration, oxygen loss, hydrogen 
loss, carbon rich, and so on during in the peat formation 
stage. This is commonly referred to as oxyfusinite. It 
is characterized by poorly preserved cell structures and 
sometimes intercellular layers can be seen. Also, wedge-
shaped oxidation cracks are generally developed in the 
cell walls [21].

Gondwana inertinite-rich coal was mainly formed un-
der cold temperate climate conditions in the sub-polar cli-
mate zones and the surrounding areas, with alternating dry 
and rainy seasons [2]. The coal formed peat swamps were 
very wet and anoxic during the summer months, while 
suffering drought conditions during the winter under oxi-
dation environmental conditions[2]. The presence of Gond-
wana inertinite-rich coal deposits indicate relatively dry 
climatic and strong peat oxidation conditions[4]. Harvey 
and Dillon [21] and Phillips et al. [22] also determined that 
the coal (coal core) of the Pennsylvania Formation located 
in Illinois (US) had been formed under drier climate con-
ditions, and had a relatively high content of fusinite [22-23]. 

Hunt and Smyth [23] believed that the inertinite-rich coal 
in the Permian Craton Basin (Cooper Basin and Galilee 
Basin) of Australia had formed due to high accumulation 
in freshwater swamps and the widespread oxidation of 
peat resulting from low settlement rates[24]. The Jurassic 
inertinite-rich coal deposits in northwestern China were 
also formed under relatively dry climate conditions[17], 

during which the peat swamp surfaces were oxidized for 
long periods of time during the coal formation period[25-26]. 
Subsequently, these factors were the reason for the high 
content levels of oxidized fusinite in the coal seams of the 
area.

In addition, the peat was transported and redeposited 
again following deposition, and parts of peat had been 
oxidized to produce inertinite with low reflectance[27]. 
Moore [27] reported that some researchers had proposed 
an alternate secondary genesis of the fungi in inertinite 
[28]. During the peat formation stage, the remaining plants 
were biochemically decomposed under the actions of 
fungi in weak oxidation environmental conditions. In ad-
dition, coarse grains and inert debris were the direct prod-
ucts of the biochemical decomposition processes[28]. Styan 
and Bustin [28] believed that when the xylem of plants is 
decomposed by dry rot fungi, it can form oxidized fusinite 
with cell very fuzzy structures[29]. Li [4] found that for the 
Middle Jurassic dried and oxidized low water level raised 
moorlands in northwestern China, the peat surface layers 
were exposed to the weak oxidation conditions of atmo-
spheric weathering, and considered that fungi alternating 
effect were one of the genetic mechanisms of the inertinite 
formation in the region [4]. Hower et al. [17] believed that 
fusinite could be the result of the oxidative degradation of 
fungi or microorganisms [18].

The inertinite of the secondary genesis, which is gener-
ally represented by pyrofusinite, is known to have formed 
as a result of forest fires or peat swamp fires. When such 
fires occurred, plant tissues were charred and carbonized 
under high temperatures, displaying clear cell structures, 
thin cell walls, and homogenized cell walls, with no ob-
servable intercellular layers[30]. Pyrofusinite is considered 
to be the product of the incomplete combustion of plants 
during wildfire events [30], and often show lenticular and 
thin-layer output in coal seams. In addition, in the cases 
where the partially humified wood was in a moist state 
and had burned less completely, fire burnt semi-fusinite 
with slightly thick cell walls had been formed [21].

Teichmuller (1961) found that the peat in the peat 
swamps of Holland was burned by fire and then carbon-
ized to form pyrofusinite, and peat coke had accumulated 
in situ [31]. Austen et al. [31] used an electron spin resonance 
method to determine that some of the fusinite in the Car-
boniferous coal of Europe and America had been affect-
ed by high temperatures before accumulation occurred, 
which was obviously a type of fusinite formed by wild-
fires [3]. Singh and Shukla [3] proposed the theory that the 
influences of wildfire events had significantly increased 
the inertinite content of the Gondwana coal. Many of the 
performed plant carbonization experiments showed that 
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the carbonization temperatures were directly proportional 
to the reflectance of the inertinite [33-36]. Therefore, accord-
ing to the reflectance of the inertinite and the palynolog-
ical data, combustion temperatures can be estimated and 
the fire types (crown fires, surface fires, and ground fires) 
can be accurately classified [37]. The inertinite reflectance 
of the Carboniferous bituminous coal in the Silesia Basin 
was determined to have changed greatly, which reflected 
the existence of diversified types of wildfires in the re-
gion, as well as the characteristics of surface fires [38].

During wildfire events, lightning strikes may be the 
main fire source which produce charcoal. Therefore, it can 
be said that the presence of polycyclic aromatic hydrocar-
bons (PAHs) and heterogeneous charcoal in strata is evi-
dence of wildfire activity [37]. For example, such evidence 
of wildfires have been found in the Permian of the south-
ern continent of Gondwana [3,5-9]; Permian of northern 
China [39-42]; upper Paleozoic erathem of Central Europe [43-

47]; and middle and upper Permian in Brazil [8-9]. Scott [47], 
Scott and Glasspool [48] believed that the so-called inerti-
nite of non-combustion origin, such as semi-fusinite, can 
be explained by the low-temperature combustion, short-
term combustion, and the different initial conditions of the 
combusted objects [48-49].

Therefore, from the perspective of its global evolution, 
the distribution of inertinite in the strata from Silurian to 
Neogene humic coal clearly shows that the global evolu-
tion trend of inertinite content in coal was mainly affected 
by the changes in climate conditions, sedimentary envi-
ronments, and local regional tectonic characteristics. The 
overall pattern of stratigraphic distribution supports the 
view that incomplete combustion was the main source of 
the inertinite in coal. These findings indicate that the long-
term changes in the atmospheric oxygen content levels 
could be effectively used to explain the global changes in 
the inertinite distributions. Meanwhile, the response rates 
affected by the different settlement and climate conditions 
were considered to have controlled the regional and local 
variations of the percentages of inertinite in the coal de-
posits [50].

It can be seen that there are still major differences in 
the genesis theories of inertinite in coal. In this study, a 
coal seam of the Middle Jurassic Period in the Yan’an 
Formation, located in the southern section of China’s Or-
dos Basin, was taken as an example for the purpose of ex-
amining the genetic mechanism of the inertinite in coal in 
order to further enrich the basic theories of coal geology.

2. Geological Background

The Ordos Basin is a large Meso Cenozoic depression ba-
sin situated in north central China. It is known to be rich 

in coal, petroleum, natural gas, uranium, and other mineral 
resources, and is an important comprehensive energy base 
for China. Among China’s energy sources, coal produc-
tion continues to account for approximately one-quarter of 
the energy supply for the entire country. In particular, the 
Middle Jurassic coal deposits are of major importance due 
to their abundant coal resources.

The Ordos Basin is surrounded by the Qinling Moun-
tain Range, Liupan Mountain, Helan Mountain, Daqing 
Mountain, and Luliang Mountain. In addition, the Fen-wei 
Basin is located south of the Ordos Basin, and its southern 
boundary is approximately located in the Weihe River Val-
ley. It is bordered by the Yinchuan and Liupanshan Basins 
in the west, and its western boundary is located on the line 
of western foot of Helan Mountain-Qingtongxia-Guyuan. 
The Ordos Basin is adjacent to the Hetao Basin in the 
north, and its northern boundary is approximately located 
on the line of Wula Mountain -Daqing Mountain. Its east-
ern boundary had become seriously corroded in the later 
period of its development and is estimated to be located  
east of the Datong-Yima line (Figure 1). The Dafosi Coal 
Mine of the Binchang Coal Field is located in the south-
western section of the Ordos Basin. Several ancient up-
lifts can be observed in the coal field which were formed 
during the coal formation period. These ancient uplifts 
are without stratigraphic deposition, which to some extent 
may have provided sediment sources. The Dafosi Coal 
Mine is located in the south region of the Binchang Coal 
Field (Figure 1c).

The coal bearing strata of the Binchang Coal Field in-
cludes the Yan’an Formation of the Middle Jurassic Period. 
The formation mainly consists of sandstone, mudstone, 
coal seams, and so on. It has been divided into five sections 
from the bottom to the top, which are referred to as the Yan 
1 to Yan 5 Sections. A developed coal seam group is locat-
ed in the upper part of each section, while the lower parts 
of each section are dominated by sandstone deposition. It 
can be seen that within the basin, the preservation degree of 
strata in the Yan’an Formation gradually improves from the 
southeast to the northwest. The southeastern and southern 
strata of the basin are seriously denuded, with only the low-
er Yan 1 Section retained in the local area. The upper part of 
the Yan’an Formation of the Dafosi Coal Mine in the Bin-
chang Coal Field is seriously eroded, with the middle and 
upper strata eroded to various degrees in different areas. 
The coal seams of the Yan’an Formation of the Dafosi Coal 
Mine are generally thick. The average single layer thickness 
of the No. 4 coal seam of ZK1 and ZK2 (near ZK1) exam-
ined in this study were determined to be 11.3 m and 8.1m, 
and the main coal forming environments were river swamp 
and lakeside swamp.
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The body of the No. 4 coal seam in the Yan 1 Section of 
the Binchang Coal Field was observed to be black-brown 
to black in color, with dark brown colored streaks charac-
terized by a  pitchy luster. Ragged-conchoid fractures were 
observed, as well as both thin band-linear strip structures and 
massive-layered structures. The No. 4 coal seam is mainly 
composed of dull coal, followed by bright coal, and low 
quantities of specular coal. Among the types of coal, the 
endogenetic fractures in the specular coal were found to be 
relatively developed, followed by the bright coal deposits. 
In ZK1, the average content of organic maceral in the No. 4 
coal seam was determined to be 89.19%; The average con-
tent of total minerals was 10.81%; In the organic macerals, 
the average content of inertinite was found to be 50.74%, the 
average content of vitrinite was 30.73%, the average content 
of liptinite was 7.72%, and the average content of mineral 
was 10.8%; The maximum reflectivity of vitrinite of No. 4 
coal seam was 0.64-0.75%, with an average of 0.71%, which 
is low-metamorphism bituminous coal.

Figure 1. Geological map of Ordos Basin and Binchang 
Coal Field [51]

3. Samples and Methods

The single-layer thickness of the No. 4 coal seam in the 
Yan 1 Section of well ZK1 in the Binchang Coal Field was 
11.3 m. This study selected 20 coal samples from the No.4 
coal seam of ZK1, which were systematically collected at 
an equal spacing of 0.5 m. The top to bottom serial num-
bers were ZK1-1 to ZK1-20, respectively. And another 
well ZK2 is near the ZK1, the No.4 coal seam was 8.1 m 
, in which 15 samples were collected with equal spacing 
of 0.5m. The top to bottom serial numbers were ZK2-1 to 
ZK2-15, respectively. The samples were analyzed in the 
current study using anthracology; inertinite reflectance 

measurements; stable carbon isotope analyses of the or-
ganic matter; analyses; and scanning electron microscopy.

For coal rock analyses and inertinite reflectance mea-
surements, a Zeiss microphotometer (HD-MY5000) was 
adopted. This study referred to the Classification of Coal 
Minerals (ICCP System, 1994) for the appropriate coal 
rock analysis standards. In addition, for the determina-
tion of the inertinite reflectance, three standard samples 
(0.590%, 0.904%, and 1.719%) were used for the cali-
bration process. The Microscopical Determination of the 
Reflectance of Vitrinite in Coal (GB/T 6948-2008) was 
referenced for the complete description of the analysis 
method and process requirements.

An isotopic mass spectrometer (MAT251/252) was 
used for the stable carbon isotope analyses of the organic 
matter. This study referred to the Determination of Or-
ganic Carbon Stable Isotopic Component - Isotopic Mass 
Spectrometry (GB/T 18340.2-2010) for the analysis meth-
od and process requirements.

In the present study, a plasma mass spectrometer (ICP-
MS, X Series 2) was used for the analysis of the major 
and minor elements, and referred to the Method for Chem-
ical Analysis of Silicate Rocks - Part 30: Determination of 
44 Elements (GB/T 14506.30-2010); Method for Chemi-
cal Analysis of Silicate Rocks - Part 14: Determination of 
Ferrous Oxide Content (GB/T 14506.30-2010); and the 
Method for Chemical Analysis of Silicate Rocks - Part 28: 
Determination of 16 Major and Minor Elements Content 
(GB/T 14506.28-2010) for the appropriate analysis meth-
ods and processes.

A scanning electron microscope (SEM) was used for 
the SEM analysis in this study. The analysis method and 
process were in accordance with the Analytical Method 
of Rock Sample by Scanning Electron Microscope (SY/
T5162-1997).

4. Results

Based on the analysis results of the No. 4 coal seam in the 
Yan 1 Section of the Binchang Coal Field, it was deter-
mined that the inertinite accounted for between 28.1% and 
81.7% of the total rock masses, with an average content of 
40.7%. In addition, it accounted for between 32.3% and 
86.1% of the total content of organic components, with an 
average content of 45.6% (Table 1). It was observed that 
the inertinite content and vitrinite/inertinite ratio displayed 
four periodic cycles in the vertical direction, which were 
assumed to reflect the dry and wet climate changes which 
had occurred in the region (Figure 2).

Then, by analyzing the scanning electron microscope 
observations of the coal samples, it was found that there 
were two major types of fusinite in the inertinite. The first 
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type was dispersed throughout the coal, with the charac-
teristics of relatively poorly preserved cell structures and 
very thick cell walls, as shown in Figure 3-F1. The second 
type was characterized by thin-layers or lenticular distri-
butions within the coal, with the fusinite being heavily 
concentrated in various areas. It was found that the cell 
walls thin, with well-preserved cell structures. Howev-
er, the second type appeared to be relatively broken, as 
shown in Figure 3-F2.

Table 1. The maceral types and contents and the vitrinite 
maximum reflectivity (V-Ro

max, %) of No.4 coal seam of 
Yan’an Formation in the south of Ordos Basin (%)

No Vitrin-
ite

Iner-
tinite Liptinite

Total 
organic 
matter

Clay Car-
bonate

Sul-
fide

Ox-
ide

V-Ro
max, 

%

ZK1-1 46 26.9 13.5 86.4 1.2 - 0.6 11.8 0.75
ZK1-2 27.9 40.3 9.2 77.3 0.6 18.6 1.2 2.3 0.72
ZK1-3 37.9 35.8 5.5 79.3 0.6 10.9 5.7 3.4 0.73
ZK1-4 28 42.2 6 76.3 1.7 19.7 0.6 1.7 0.72
ZK1-5 39.2 42.3 7.1 88.6 1.1 9.1 - 1.1 0.7
ZK1-6 26.7 59.6 10.2 96.5 1.8 0.6 - 1.2 0.69
ZK1-7 33.1 51.7 8.7 93.5 3.5 - - 2.9 0.72
ZK1-8 52.3 28.1 6.6 87 2.2 9.7 0.5 0.5 0.7
ZK1-9 25.7 62.6 6.8 95.1 2.7 - - 2.2 0.73
ZK1-

10 18.7 43.8 4.8 67.3 1.3 24.4 6.4 0.6 0.68

ZK1-
11 40.6 44.8 5.7 91.1 3 5.9 - - 0.64

ZK1-
12 32.9 54.6 10 97.5 1.9 - - 0.6 0.69

ZK1-
13 48 31.3 5.2 84.5 0.6 5.7 9.2 - 0.69

ZK1-
14 45.7 44 8.5 98.2 1.2 - - 0.6 0.68

ZK1-
15 30.4 53.5 12.1 96 2 1 0.5 0.5 0.69

ZK1-
16 6.3 80.4 10 96.7 2.2 - - 1.1 0.7

ZK1-
17 12.4 75.2 9.9 97.5 2.2 - - 0.3 0.75

ZK1-
18 12.4 81.7 0.8 94.9 3.8 - - 1.3 0.73

ZK1-
19 4.7 73 10.7 88.4 3.4 4.5 0.7 3 0.72

ZK1-
20 45.6 43 3 91.6 - 7.6 0.8 - 0.73

AVG 30.7 40.7 7.1 89.2 1.95 9.81 2.6 2.1 0.71

Furthermore, based on the analysis results of the prin-
cipal and trace elements, and carbon isotopes (Table 2) of 
the No. 4 coal seam in the Yan 1 Section of the Binchang 
Coal Field, it was determined that the typical elements, 
minerals (assemblages), carbon isotopes, and so on, which  
reflected the climatic changes, had displayed certain verti-
cal regularities (Figures 3 and 5). It was considered in the 
study that the observed patterns had roughly reflected four 
cycles of dry and wet periods which had occurred during 
the paleoclimate changes in the region.

The measurement results of the reflectance of inertinite 

in 9 coal samples obtained from the No. 4 coal seam of the 
Yan 1 Section in the Binchang Coal Field revealed that the 
reflectance of inertinite of the No. 4 coal seam was mainly 
concentrated within the range of 1.1 to 2.53%, with indi-
vidual points lower than 1.1% and higher than 2.5%. The 
average reflectance of the inertinite was determined to be 
1.64%, with a standard deviation of 0.2 to 0.29. Therefore, 
the reflectance of the inertinite distribution was relatively 
concentrated (Table 3). The reflectance distributions of the 
inertinite of the different samples were found to vary, with 
some relatively concentrated and some scattered, reflect-
ing a variety of causes (Figure 6).

Figure 2. Relationship of vertical changes between coal 
maceral and paleoclimate cycles in No.4 coal seam of Yan 

1 Section in ZK1, Binchang Coal Field

Figure 3. Fusinites under SEM in No.4 coal seam of Yan 
1 Section in ZK1, Binchang Coal Field

Note: F1- fusinite with thick cell walls; F2- fusinite with thin cell walls.
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Figure 4. Relationship between carbon isotopic vertical 
changes and paleoclimate cycles in No.4 coal seam of Yan 

1 Section in ZK1, Binchang Coal Field

Table 3. The inertinite reflectance (I-Ro,%) of No. 4 coal 
seam of Yan 1 section in ZK2, Binchang Coal Field

No. I-Ro
min,% I-Ro

max,% I-Ro
avg,%

Number of 
samples

Standard 
Deviation

13 1.25 2.53 1.60 51 0.23
15 1.21 2.14 1.65 58 0.29
17 1.33 2.3 1.79 53 0.29
19 0.91 2.05 1.45 51 0.23
21 1.22 4.54 1.74 53 0.29
23 1.3 2.18 1.65 45 0.2
25 1.17 2.23 1.59 54 0.29

Figure 5. Relationship between characteristic elements (min-
eral ratios) vertical changes and paleoclimate cycles in No.4 

coal seam of Yan 1 Section in ZK1, Binchang Coal Field

Table 2. The mineral (element) contents and carbon isotopes of No.4 coal seam of Yan 1 Section in ZK1, Binchang Coal Field

No.
Sr Cu Sr/Cu MnO Mn FeO Fe2O3

FeO/
Fe2O3

Mg Ga Mg/
Ga Al2O3 MgO CaO Na2O K2O

CaO/
(MgO

+Al2O3)

(CaO+K2O+
Na2O)/Al2O3

δ13CV-PDB

μg/g μg/g % % % % % % % % % % % ‰
1 103.00 53.10 1.94 0.007 0.005 0.630 0.705 0.894 0.211 0.059 3.552 17.180 0.351 0.083 0.340 1.500 0.079 0.128 -
2 53.20 26.60 2.00 0.005 0.004 0.150 0.185 0.811 0.109 0.101 1.078 4.350 0.181 0.141 0.203 0.107 0.385 0.113 -22.1
3 347.00 6.22 55.79 0.033 0.026 2.060 2.560 0.805 1.158 10.771 0.108 1.100 1.930 15.080 0.121 0.012 3.359 1.875 -22.5
4 267.00 5.30 50.38 0.052 0.040 2.650 3.350 0.791 0.672 8.436 0.080 1.130 1.120 11.810 0.126 0.016 2.642 1.117 -22.6
5 393.00 4.43 88.71 0.059 0.046 1.260 4.130 0.305 1.194 12.343 0.097 0.734 1.990 17.280 0.120 0.012 2.824 2.891 -21.9
6 370.00 17.10 21.64 0.025 0.019 1.690 2.000 0.845 0.786 9.636 0.082 0.992 1.310 13.490 0.126 0.015 4.076 1.463 -22.7
7 204.00 52.30 3.90 0.009 0.007 0.390 0.452 0.863 0.202 1.371 0.147 1.330 0.337 1.920 0.142 <0.010 2.433 0.000 -22.6
8 75.90 43.80 1.73 0.015 0.012 0.670 0.985 0.680 0.114 0.250 0.456 1.750 0.190 0.350 0.169 0.016 0.298 0.214 -21.9
9 298.00 5.94 50.17 0.030 0.023 1.060 1.790 0.592 0.750 8.536 0.088 1.280 1.250 11.950 0.132 0.019 3.931 1.095 -21.4

10 82.10 5.90 13.92 0.017 0.013 0.660 1.050 0.629 0.110 0.192 0.571 1.670 0.183 0.269 0.173 0.011 0.218 0.220 -22.0
11 424.00 3.65 116.16 0.060 0.046 2.360 4.240 0.557 0.996 12.321 0.081 0.871 1.660 17.250 0.135 0.012 2.924 2.075 -20.1
12 1201.00 4.52 265.71 0.022 0.017 0.810 1.400 0.579 0.367 5.229 0.070 1.970 0.612 7.320 0.130 0.028 3.638 0.391 -21.7
13 128.00 50.40 2.54 0.007 0.005 0.170 0.219 0.776 0.085 0.349 0.244 1.450 0.142 0.489 0.129 0.013 1.355 0.196 -22.1
14 551.00 5.23 105.35 0.075 0.058 1.310 3.720 0.352 1.080 14.214 0.076 0.695 1.800 19.900 0.155 0.018 3.605 2.839 -21.5
15 94.90 8.44 11.24 0.005 0.004 0.140 0.175 0.800 0.095 0.511 0.185 1.350 0.158 0.716 0.127 0.017 2.150 0.224 -21.9
16 118.00 59.90 1.97 0.007 0.005 0.260 0.317 0.820 0.101 0.129 0.784 1.910 0.169 0.181 0.158 0.028 0.372 0.186 -22.0
17 103.00 51.50 2.00 0.007 0.005 0.120 0.163 0.736 0.116 0.836 0.139 2.150 0.193 1.170 0.151 0.013 3.287 0.166 -21.5
18 1005.00 6.51 154.38 0.004 0.003 <0.10 0.113 0.000 0.097 0.246 0.394 1.760 0.162 0.345 0.185 0.015 1.255 0.206 -21.7
19 68.80 57.50 1.20 0.005 0.004 <0.10 0.110 0.000 0.101 0.675 0.149 3.910 0.168 0.945 0.128 0.059 3.399 0.091 -21.3
20 2083.00 53.70 38.79 0.023 0.018 0.500 1.630 0.307 0.160 3.943 0.041 3.760 0.267 5.520 0.145 0.034 2.910 0.119 -20.8
21 421.00 60.80 6.92 0.024 0.019 0.590 1.990 0.296 0.124 6.571 0.019 5.600 0.207 9.200 0.157 0.140 4.188 0.090 -21.6
22 187.00 30.40 6.15 0.009 0.007 0.800 1.040 0.769 0.153 0.274 0.558 21.620 0.255 0.384 0.386 0.646 0.297 0.060 -
23 412.00 31.20 13.21 0.007 0.005 0.690 0.819 0.842 0.122 0.169 0.723 20.500 0.203 0.236 0.354 0.534 0.231 0.053 -
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5. Discussion

5.1 Relationship between the Climatic Conditions 
and the Inertinite Content Levels during the Coal 
Formation Periods

In regard to the genesis of the inertinite (particularly 
fusinite), regardless of whether it had been an oxidation or 
wildfire genesis, it was considered that relatively dry con-
ditions were favorable for the formation of inertinite.

Figure 6. The inertinite reflectance distribution of No. 4 
coal seam of Yan 1 Section in ZK2, Binchang Coal Field

(1) Ancient plants reflect the dry and wet changes of 
the ancient climate

The sporopollen in the No. 4 coal seam of the Yan 1 
Section in the Binchang Coal Field had mainly developed 
as a palynological assemblage of Classopollos-Cyathidites 
minor. The content of the gymnosperm pollen was observed 
to be higher than that of the pteridophyte spores, and was 
characterized by high content levels of Classopollis pollen. 
The Cycloidits minor spores also accounted for an import-
ant proportion, which reflected the fact that the main coal 
forming plants were pteridophytes and gymnosperms[25]. It 
is generally believed that the parent plants of Classopolis are 
mainly Cheirolepidiaceae, which usually occur under hot 
and dry climatic conditions[52-53], but can also adapt to humid 
climates[54]. The spore parent plants of the Cyathidits minor 
are generally considered to be Cyatheaceae and fernaceae 
(part), which are known to mainly grow under humid tropical 
and subtropical conditions[55]. The development of the plant 
communities during the formation periods reflected that the 
coal forming periods had mainly experienced warm temper-
ate subtropical climatic conditions. The characteristics of the 
sporopollen and spore assemblages of the ancient plants also 
reflected the complexity of the paleoclimate environment in 
the coal forming periods of the No. 4 coal seam in the Yan 1 
Section, which had experienced approximately four cycles of 
dry and wet climate changes[25].

(2) Compositions of the coal reflecting the changes in 
the dry and wet paleoclimate

The characteristics of coal organic macerals are 

known to be closely related to the temperature and hu-
midity levels of the paleoclimate. For example, the wet-
ter the climate is, the more fully the plant remains will 
be able to decompose to form vitrinite-rich coal seams. 
In contrast, the drier the climate is, the more easily in-
ertinite-rich coal seams will be formed[56-57]. Therefore, 
it can be inferred that vitrinite is formed by gelation 
under the conditions of overlying water reductions, and 
inertinite is formed by fusinization under dry and hot 
oxidation marsh environmental conditions [57]. If a peat 
swamp is a micro-environment with a high-water level, 
overlying water, and humidity, the formed peat will be 
transformed into coal vitrinite at a high percentage. Oth-
erwise, if the water level of a peat swamp is low, the mi-
cro-environment will be generally dry, and the final coal 
inertinite formation will be high[1,58]. In the present study, 
in accordance with the different genetic relationships 
among the macerals, and by using their statistical values, 
several parameters were introduced in the experimental 
processes in order to more intuitively reflect the genetic 
characteristics of the coal seam[59]. Among the introduced 
parameters, the size of the vitrinite/inertinite ratio (V/I, 
also known as the moisture coefficient) in the coal was 
determined to accurately reflect the degrees of moisture 
or dryness of the peat swamps during the coal formation 
periods[60-61]. The warm and humid paleoclimate was 
considered to be related to the percentage content and V/
I ratio of the vitrinite and inertinite. Therefore, when the 
ratio of vitrinite to inertinite was greater than 1, it was 
indicated that the climate conditions had been warm and 
humid. However, when the ratio of vitrinite to inertinite 
was less than 1, it was indicated that the climate con-
ditions had been hot and dry. Moreover, in accordance 
with the change trends of vitrinite content, inertinite 
content, and vitrinite/inertinite ratio, four wet-to-dry pa-
leoclimate cycle changes were successfully identified in 
the No. 4 coal seam of the Yan 1 Section of the Binchang 
Coal Field. The content of inertinite was observed to be 
higher during the dry climatic periods (Figure 2).

(3) Characteristics of the elements and carbon iso-
topes reflecting the dry and wet changes of the paleocli-
mate

According to previous related research results, the main 
trace elements of the hygrophilous type are Cr, Ni, Mn, 
Cu, Fe, Ba, Br, Co, Cs, Hf, Rb, Sc, and Th. Meanwhile, 
the main trace elements of the xerophilous type are Sr, Pb, 
Au, As, Ca, Na, Ta, U, Zn, Mg, Mo, and B [62]. When the 
content level of the element Sr is more than 20 μg/g, dry 
and hot climate conditions are inferred. In addition, when 
the content level is less than 0.15 μg/g, this tends to reflect 
a wet climate. In addition, when the content level of the 
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element Mn is more than 0.15 μg/g, a dry and hot climate 
is reflected, and when it is less than 0.15 μg/g, wet climate 
conditions can be assumed. When the ratio of Sr/Cu is 
larger than 10, a dry and hot climate environment is indi-
cated. However, when it is less than 10, the climate con-
ditions can be assumed to have been wet [63-64]. It has been 
found that the current studies of paleoclimate using minor 
elements are too singular. Therefore, the ratio changes of 
the macro-elements, with characteristics indicating their 
meanings, were discussed in this research study. Gener-
ally speaking, Mg/Ca ratios greater than 0.5 reflect warm 
and humid climate conditions, and Mg/Ca ratios less than 
0.5 reflect dry climate conditions [65]. Furthermore, FeO/
Fe2O3 ratios greater than 0.7 tend to reflect wet climate 
conditions, and FeO/Fe2O3 ratios less than 0.7 indicate dry 
environments [66-67]. It has also been determined that ratios 
of CaO/(MgO+Al2O3) which are greater than 0.6 indi-
cate warm climate conditions. Meanwhile, ratios of CaO/
(MgO+Al2O3) which are less than 0.6 reflect cold climatic 
conditions. As further indicators of climate conditions, 
(CaO+K2O+Na2O) /Al2O3 ratios greater than five tend 
to reflect a dry climate, while (CaO+K2O+Na2O) /Al2O3 
ratios less than five indicate a wet climate [68]. In regard to 
the No. 4 coal seam in the Yan 1 Section of the Binchang 
Coal Field, according to the change trends of element con-
tent levels and ratios, it was identified that the coal seam 
had experienced four paleoclimate cycles of humidity and 
dry. The paleoclimate cycles are labeled by occurrence as 
I, II, III, and IV successively, from early to late. The No. 
4 coal seam was determined to have a thickness 11.30 m, 
with the average thickness of each climate cycle deter-
mined to measure 2.83 m (Figure 4).

The δ13C value of the organic carbon isotopes in a 
coal seam can potentially represent the temperature and 
humidity conditions during peat deposition. It has been 
found that such climate factors as humidity and tempera-
ture have important influences on the carbon isotope com-
positions of plants [69]. Therefore, the δ13C has a negative 
correlation with rainfall. That is to say, with increases in 
rainfall, the δ13C value tends to decrease (lightens). How-
ever, in more arid environments, plants tend to adjust their 
stomatal resistance in order to avoid excess water evapo-
ration, resulting in decreases in CO2 concentrations within 
cells and changes in the δ13C value [69]. Under certain con-
ditions, such as plant species and atmospheric composi-
tions, dry and hot climatic conditions will be conducive to 
the enrichment of 13C in plants, and the δ13C value of the 
coal-forming plants will be on relatively high. In contrast, 
wet and warm climatic environments are not conducive 
to the enrichment of 13C in plants, and the δ13C value of 
the coal-forming plants will tend to be higher [70]. In other 

words, with increased temperature levels, when the value 
of the δ13C becomes higher, paleoclimate changes from 
wet to dry heat are indicated. Meanwhile, when the value 
of the δ13C becomes reduced, it is indicated that the pa-
leoclimate changes are from dry heat to wet conditions. 
In the present study, the obvious negative and positive 
migration trends of the δ13C in the No. 4 coal seam of the 
Yan 1 Section in the Binchang Coal Field revealed the 
transformations of the paleoclimate from dry to humidity, 
and from humidity to dry. Therefore, it was determined 
that the sedimentary period of the No. 4 coal seam experi-
enced four cycles of humidity and dry paleoclimate evolu-
tion (Figure 3).

(4) Milankovitch cycle analysis of the driving-force 
system of the climate evolution

Previous studies have shown that the Neogene coal 
seams contain information related to Milankovitch cycles. 
The information regarding these cycles can be found us-
ing spectrum analysis methods, as well as other signals, 
which allow for the paleoclimate cycles in coal seams 
to be examined [71-72]. In this study, using the results of 
the spectrum analysis, and by processing the available 
logging data (natural gamma and rock density logging 
data) of the No. 4 coal seam of the Yan 1 Section in the 
Binchang Coal Field, the Earth’s orbiting parameters 
were successfully determined and Milankovitch cycle was 
identified. Therefore, the number and average thicknesses 
of the paleoclimate cycles formed by the Earth’s orbiting 
parameters in the No. 4 coal seam could be analyzed. The 
obtained results illuminated the development mechanism 
of the paleoclimate cycles from the perspective of their 
genetic mechanism, and then verified the reliability of 
the paleoclimate cycles which had been comprehensively 
identified using the above-mentioned four methods. Then, 
by utilizing the results of the one-dimensional continuous 
wavelet transform analysis of the natural gamma and rock 
density logging data of the No. 4 coal seam of the Yan 1 
Section in the Binchang Coal Field previously completed 
by Wang et al. (2018), the average values of the low-fre-
quency, medium-frequency, and high-frequency were 
determined to be 0.28 cycle/m, 0.65 cycle/m, and 1.33 
cycle/m, respectively, as identified by the spectrum analy-
sis. Then, the Milankovitch cycles contained therein were 
identified[58]. The Milankovitch cycles controlled by the 
different orbital parameters in the No. 4 coal seam were 
further classified as follows: Four long-term cycles con-
trolled by eccentricity; nine middle-term cycles controlled 
by gradient; and fifteen short-term cycles controlled by 
precession. It was considered that the paleoclimate cycles 
in the No. 4 coal seam of the Yan 1 Section were astro-
nomical cycles controlled by eccentricity. 
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In summary, it was confirmed in this study that approx-
imately four periodic cycles of climate change controlled 
by eccentricity cycles had occurred during the formation 
of the No. 4 coal seam of the Yan 1 Section. Additionally, 
it was found that the content levels of inertinite were high-
er during the dry climate periods. 

5.2 Relationship between the Free Radical Con-
centrations of the Inertinite and the Genesis Tem-
perature of the Coal 

Austen et al. [31] suggested that the concentrations of free 
radicals varied very little before the highest temperature 
had ever been experienced by organic matter during its 
history [31]. Zhuang and Wu et al. (1996) conducted a para-
magnetic resonance study of the fusain in the No. 4 coal 
seam of the Yan 1 Section in the Binchang Coal Field[25], 
and determined that the free radical concentrations of fu-
sain in the coal seam had changed significantly with the 
increases in  temperature. It was found that the tempera-
ture point which had shown the most obvious change was 
approximately 300 ℃ , which indicated that the highest 
temperature of the fusain during the entire coal gasifica-
tion process had not exceeded 300 ℃ . It could be seen 
from the curve shape of the relationship between the heat-
ing temperature and the concentrations of free radicals that 
the curve shapes of the fusain and oxidized wood were 
very similar. For example, an obvious prominent double 
peak type was seen, which was significantly different 
from the “front flat and rear steep” single peak shapes of 
the destructive distillated charcoal (Figure 7a). A similar 
conclusion could be drawn from the curve shapes of the 
relationship between the heating temperature of the dull 
coal and the concentrations of free radicals (Figure 7b). 
Therefore, Zhuang and Wu [25] put forward the theory that 
the fusain in the No. 4 coal seam of the Yan 1 Section of 
the Binchang Coal Field had not been formed by burning 
actions, but were instead related to the strong putrefaction 
and biochemical oxidation during the early formation 
stages of the peat [25]. However,  the oxidation could not 
be separated from the participation of the microorganisms. 
The activities of the microorganisms had been mainly 
restricted by the surrounding environmental conditions. 
Therefore, under the conditions of sufficient available nu-
trients, the most important factor would be temperature. 
The suitable temperature range for microbial activities is 
known to be between 0 and 80 ℃ . It has been observed 
that under the conditions of atmospheric pressure, micro-
organism tend to be the most physiologically active in the 
temperature range of 30 to 50 ℃ [73]. This study’s simu-
lation results revealed that the maximum temperature of 
the fusain during the entire coalification process had not 

exceeded 300℃ , which was too high for microorganisms, 
and not conducive to microorganism activities or the for-
mation of inertinite.

Figure 7. Relation schema between heating temperature 
and free radical concentration [25]

5.3 Relationship between the Types and Tempera-
ture Levels of the Wildfires and the Reflectance of 
the Inertinite 

By the late Silurian Period, plants occupied large por-
tions of the Earth’s surface, and the oxygen content in 
the atmosphere had reached levels which could maintain 
wildfire events (> 15%). As a result, wildfire events often 
occurred. During the deposition period of the Middle Ju-
rassic Yan’an Formation, the oxygen concentrations in the 
atmosphere were known to have exceeded 15% (Figure 
8), and the basic conditions for wildfire events were avail-
able. 

As detailed in Table 4, wildfires can be grouped [29] as 
follows: (1) Ground fires burning organic material below 
the litter level, (2) Surface fires burn litter and herbaceous 
and shrub type plants; and (3) Crown fires burning the 
canopy of trees and larger shrubs. The fire types are also 
characterized by different burning temperature levels, with 
ground fires producing temperatures of  approximately 
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300℃ . However, the flames in many such fires generally 
produce temperatures of approximately 600℃ . Moreover, 
intense temperatures of 800℃ or higher can potentially be 
reached in crown fires (for example, in stands of conifers) 

[35, 74]. 

Figure 8. Prediction of pO2 from Inert%. Line; best esti-
mate based on late Palaeozoic pO2 maxima of 30%. Error 
bars 1 s.d. from mean. Shaded area; estimate of maximum 
error assuming Phanerozoic pO2 maxima of 35% + 1 s.d. 

(upper margin) and 25% % 1 s.d. (lower margin) [75]

The correlation between inertinite reflectance and the 
burning temperature range is not completely linear. The 
correlation can be described by the linear regression equa-
tion T = 184.10+ 117.76×%Ro (r2 = 0.91), where T is the 
burning temperature and %Ro indicates the measured iner-
tinite reflectance [76]. 

In the present study, according to the reflectance test 
results of the inertinite in the No. 4 coal seam of the Yan 
1 Section of the Binchang Coal Field (Table 3), the mini-
mum reflectance of the coal was 0.91%, and its formation 
temperature was 291.3 ℃ . The maximum reflectance was 
determined to be 2.53%, and its corresponding temperature 
was 482 ℃ . In addition, the reflectance of individual points 
was 4.54%, and the corresponding temperature was 718.7 
℃ . For the nine examined samples obtained from the study 
area, the average reflectance of the inertinite ranged be-
tween 1.35 and 1.79%, and the corresponding temperature 
range was between 354.9 and 394.9 ℃ . This study’s calcu-
lation results showed that the genesis of the wildfire events 
in the No. 4 coal seam of the Yan 1 Section in the study 
area were mainly ground fires, and partially surface fires 
(Table 4). Furthermore, the calculated results showed that 
the temperature range was similar to the fusain formation 
temperatures measured by Zhuang and Wu [25]. 

Ground fire is a type of fire with low combustion inten-
sity, long duration, and strong concealment characteristics. 
This type of fire event often occurs in the humus and peat 
layers of forests and wetlands. During the dry seasons, 
ground fire events occur throughout world and are affect-
ed by climate changes and extreme weather conditions [77]. 
The occurrences of ground fire events are very common. 

The rich near-soil layers and underground combusti-
bles form the material conditions for the occurrences of 
ground fire events. In the cases of low precipitation, long-
term drought, increased ground temperatures, decreased 
relative humidity, and the drying of combustible material, 
surface fires and lightning can potentially result in ground 
fires. Ground fires generally burn slowly, last for a long 
time, burn insufficiently, and have the characteristics of 
strong concealment, combustion discontinuity, and vari-
able direction [79]. Ground fire events have geographical 
and temporal distribution characteristics. Also, when com-
pared with humus, peat is the main limiting factor of the 
spatial distributions of ground fires. Approximately 80% 
of peat is distributed in northern temperate zones, 15% 
to 20% in the tropical and subtropical zones, and only 
a small percentage is distributed in southern temperate 
zones [79]. In regard to time distributions, ground fires gen-
erally occur during dry seasons [77]. 

Table 4. Inertinite reflectance populations and assumed 
burning temperatures[36]

High-reflecting inertinite corresponding to tempera-
tures >600℃ that can be obtained in crown fires of stands 
of conifers is particular abundant in the Rhaetian B-bed.

Using experimental simulation methods, Wang et al. 
(2018) found that the critical point temperature of peat 
transformation from self-heating to spontaneous combus-
tion was approximately 50℃ [80]. That is to say, the exter-
nal conditions must make the internal temperature of peat 
reach above 50 ℃ in order to maintain the self-heating 
and spontaneous combustion reactions of the peat. It was 
believed in this study that the southern Ordos Basin was 
located near a northern temperate zone during the Middle 
Jurassic Period, during which time the climate of Yan’an 
Formation had been relatively dry. This had provided the 
necessary conditions for the development of ground fires. 
Therefore, inertinite formation in the coal seam may have 
resulted from wildfire events. 
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6. Conclusions

Through the above-mentioned analysis results, the fol-
lowing cognition was obtained: 

(1) During the formation period of the No. 4 coal 
seam of the Yan 1 Section in the southern section of the 
Ordos Basin, the overall climate had been relatively dry. 
It was determined that four cycles with alternating dry 
and wet climate conditions controlled by the eccentric-
ity astronomical period had occurred. During the dry 
climate periods, the content of inertinite was relatively 
high.

(2) The formation of inertinite by oxidation could not 
be separated from the participation of the microorganisms, 
and the temperature range known to be suitable for micro-
organisms activity is between 0 and 80 ℃ . This study’s 
simulation results of the free radical concentrations 
showed that the maximum temperature of the fusain in 
the No. 4 coal seam of the Yan 1 Section in the study area 
had not exceeded 300℃ . However, this was too high for 
microorganism activities, and also not conducive to the 
formation of inertinite. 

(3) It was found in this study that, according to the cal-
culation results of the reflectance of inertinite, the genesis 
temperature of the inertinite had been lower than 400℃ . 
These findings indicated that the wildfire type genesis of 
the No. 4 coal seam in the Yan 1 Section in the study area 
had been mainly ground fire, and partially surface fire. 
Moreover, the geographical location, climatic conditions, 
atmospheric oxygen concentration, and so on of the study 
area were all conditions favorable for the occurrences of 
wildfire event. Therefore, it was speculated in this study 
that there was also inertinite of oxidation genesis in the 
study aera. However, this had not been the main genesis 
type.

(4) There were dense and scattered fusinite observed 
in the No. 4 coal seam of the Yan 1 Section in the study 
area, and the thicknesses of the cell walls were observed 
to be different. It was speculated that these differences 
were related to the wildfire type, combustion temperature, 
combustion time, and the different initial conditions of the 
combusted objects during the coal forming periods.
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