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ABSTRACT

Variations in the dynamics of the oceanic lithosphere are important at the societal and research 
levels because geological activities are associated with these variations. At any given section 
of the lithosphere, the time in which its typical geophysical parameters vary is considerably 
smaller than section's age. The lithosphere can, therefore, be assumed to proceed from one 
state of dynamic equilibrium to another displaced deferentially. When these conditions are 

through the lithosphere is found to be an adiabatic invariant. Lithosphere physical parameters 
-

actions between oceanic lithosphere and continents, lithosphere dynamics, and deep mantle 
heat transfer. The temperature of the solid earth remains unchanged for the foreseeable future, 
and variations in sea temperature vary the intensity of geological activities. If sea temperature 
increases, the geological activities increase and vice versa. Relevant equations are derived us-
ing this thermal analysis of the lithosphere and validated based on observations and the work 
of others. In addition, the analysis reveals that the eleven-year solar constant cycle is capable 
of inducing 1.56 x 1016 J yr-1 of geological activities.
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1. Introduction

Publication[1] associates variations in the observed
geological activities with geomagnetic activity re-
sulting from the eleven-year solar constant cycle.

Because sea temperature varies with the cycle as well,
variations in sea temperature should not be excluded from
consideration. Sea temperature variations may well be the
cause of the observed variations in geological activities. 
Reference [2] summarizes the controversy relative to the
observed pattern of abyssal hills around the axis of mid-
ocean ridges (MOR) and includes references for 
further

reading on the subject. Milankovitch cycle and climate 
change are considered as the likely causes of the observed 
variation in the texture of the lithosphere around MOR. 
Paper [3] explores possible link between climate change 
and tectonics, and [4] derives mathematical relationships 
between variations in sea temperature and energy of plate 
tectonics. 

Climates generally alter sea temperature, and in this 
work, the correlation between dynamics of the lithosphere 
and sea temperature will be demonstrated theoretically 
based on the thermal analysis of the lithosphere.  Refer-
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ence [5] presents a simplified solution of the Fourier equa-
tion for the lithosphere. Textbooks [6,7] solved the Fourier 
equation using a more mathematically complex approach. 
However, the solutions are for a steady state where all 
of the variables including ocean temperature do not vary 
with time. These references address the effect of climatic 
change on the continental crust's geothermal gradients. 
They do not address the impact of climate change on the 
geothermal gradients of the oceanic lithosphere. 

Sea temperature appears to be variable with climate 
change. The study [8] reported variation in the temperature 
of the abyssal brine of the southern oceans, and these 
oceans make up a substantial portion of the hydrosphere. 
In addition they include large segments of the plate tecton-
ic system. The observed abyssal warming could have an 
effect on the thermodynamics of tectonics and should be 
accounted for in the thermal analysis of the oceanic lith-
osphere. Most of the oceanic lithosphere is thick, and the 
observed small variation in sea temperature is generally 
presumed to have negligible impact on the thermal struc-
ture or dynamics of the lithosphere. However, at midocean 
ridges the lithosphere is thin or yet to be formed. The ob-
served small variation in sea temperature thus cannot be 
ignored; its effect is amplified by the large surface area of 
the lithosphere at the ridges. If sea temperature variation 
can alter the thermodynamics of midocean ridges, then 
the entire dynamics of the lithosphere of the earth can be 
impacted. Midocean ridges are the drivers of the oceanic 
lithosphere after all.

Reference [9] indicates that the new oceanic lithosphere 
is generated at midocean ridges at the rate of 2-20 cm yr-1, 
which is typically referred to as annual spreading of ocean 
floor. It takes about 200 million years to renew the entire 
oceanic floor. For the foreseeable future, average ocean 
floor spreading is infinitesimal compared with the total 
width or length of the oceanic lithosphere. Consequently, 
lithosphere transformations inherently assume states of 
dynamic equilibrium displaced deferentially apart. There-
fore, the Fourier equation is re-analyzed in this manuscript 
to account for variation in sea temperature and lithosphere 
dynamic equilibrium. The mathematical conclusions are 
interesting and differ from the current understanding: the 
earth's internal heat flux through the lithosphere is con-
stant and changes in lithosphere dynamics are associated 
with sea temperature variations, which are in turn cor-
related with the climates. Other findings include constant 
change of lithosphere spreading and thickness and con-
stant temperature of the solid earth. The objective of this 
work is to demonstrate these conclusions mathematically 
and validate the derived equations based on observations 
and the work of others. This has merits at the societal and 

scientific levels for it enhances our understanding of the 
relationship between lithosphere dynamics, geological ac-
tivities, and climates. 

2. Mathematical Model

2.1 Expansion of Geophysical Parameters in Series

As discussed in the introduction section, the motion of the 
oceanic lithosphere and motion variation occur infinites-
imally with time. Consequently, the geophysical param-
eters of the lithosphere vary infinitesimally as well. The 
parameters vary continuously and they can be considered 
as continuous functions. Also, they can be assumed to be 
differentiable, and the geophysical parameters may be 
expanded in a Taylor Series. An arbitrary parameter of the 
lithosphere, Ψ(t), can be expanded as follows: 

Ψ(t)=Ψ(t0)+[dΨ(t)/dt]t=t0 dt+R, [10]� (1)
Where the zero prefix stands for an initial or a refer-

ence period of time and, dt, is an infinitesimal period of 
the time, t. The remainder, R, includes infinitesimal dt2 
and higher order terms and can be neglected. Equation (1) 
yields dΨ(t)/dt=[dΨ(t)/dt]t=t0. The derivative [dΨ(t)/dt]t=t0 is 
equal to the slope of the function, Ψ(t), calculated at t=t0; 
it is a constant number. All of the geophysical parameters 
can thus be considered to vary linearly in the proximity 
of an initial state. This mathematical approach simplifies 
the solution of the Fourier equation with variation in the 
temperature of ocean floor as will be demonstrated in the 
succeeding paragraphs. 

2.2 Dynamic Equilibrium

For practical purposes, the physical parameters associated 
with the dynamics of the oceanic lithosphere have varia-
tion time, t, that is considerably smaller than lithosphere 
age at virtually every section. Lithosphere thermodynamic 
transformations are  therefore displaced differentially 
from each other, and they may be considered in dynamic 
equilibrium. Referring to Fig. 1, if the lithosphere as-
sumes states of dynamic equilibrium at the time, t0, and, t, 
displaced differentially, then F0 v0=constant and F v=con-
stant. However, F0 v0≠F v and 

F v-F0 v0=ΔE=ΔM Lf� (2)
Where
F =Force per unit length of MOR between oceanic lith-

osphere and surroundings, N m-1.
v  =Spreading of the oceanic lithosphere, m yr-1.
E =Energy exchanged with the surroundings per unit 

length of MOR, J yr-1 m-1.
M=Average mass of the re-generated new basalt per 

unit length of MOR, kg yr-1m-1.
Lf=Basalt latent heat of solidification calculated at the 

pressure of the deep mantle, J kg-1.

Journal of Geological Research | Volume 01 | Issue 01 | April 2019



14  Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jgr.v1i1.458

the last term of Eq. (2) is obtained from [4]. On the
other hand, ΔM=ρ(L v–L0 v0), where L is the height of the
regenerated basalt measured in meters and ρ is the density
of basalt in kg m-3. because, L, and, v, vary deferentially,
ΔM=ρ[(L0+ΔL) (v0+Δv)-L0 v0]=ρ(L0 Δv+ΔL v0+ΔL Δv).
Variation in v and L are too small compared with their
values and L0 Δv+ΔL v0≈Δ(L v)≈Δ(L0 v0). since L, v, L0,
v0 are related to states of dynamic equilibrium, they are
constants and Δ(L v)=Δ(L0 v0)=0. The term L0 Δv+ΔL v0

is thus negligible and ΔM≈ρ Δv ΔL=ρ Δh Δv. Where h is
the height of midocean ridges above sea floor. According-
ly, Eq. (2) yields

Δv=ΔE/(ρ Lf Δh)=k1 (3)
Because the ratio E/h is proportional to the total energy

produced by tectonics to that of the potential energy of
midocean ridges, which is a constant, the ratio ΔE/Δh is a
constant as well. The right hand side of Eq. (3) is  there-
fore equal to the constant k1. Or, variation in lithosphere
spreading, Δv, is the same for any two consecutive states
of dynamic equilibrium.

referring to Fig. 2, an arbitrary section of the litho-
sphere at a distance, x, from midocean ridges has an age
G=2 x/v and a thickness d=k2 G

1/2, where k2 is a constant
of proportionality. For an initial ocean floor spreading
v0 at an initial time t0, the lithosphere section at the dis-
tance x0 from midocean ridges has an age G0=2 x0/v0 and
a thickness d0=k2 G0

1/2. For an infinitesimal variation in
ocean floor spreading from, v0, to, v, in an infinitesimal
period of time dt=t-t0 and neglecting the remainder r,
Eq. (1) for, d(v), and, v, instead of, Ψ, and, t, respectively
yields

[d(v)-d(v0)]/Δv=Δd/Δv≈[(1/2) k2 G
-1/2 dG/dv]v=v0=k3 (4)

Where
G      =Section age for floor spreading v, yr.
v       =Ocean floor spreading, m yr-1.
d(v)  =Lithosphere thickness at a distance, x0, from mi-

docean ridges, m.
because the time of lithosphere dynamic variation, t,

is considerably smaller than the age of the lithosphere at
the section in consideration, then G≈G0 and the term [(1/2)
k2 G

-1/2 dG/dv]v=v0 of Eq. (4) is equal to a constant k3.
Equation (3) reveals that variation in ocean floor spread-
ing, Δv, is a constant that has the same value between any
two consecutive states of dynamic equilibrium. Equation
(4) on the other hand indicates that variation in the thick-
ness of the lithosphere, Δd, is another constant having the
same value between any two consecutive states of dynam-
ic equilibrium. these are intrinsic characteristics of the
dynamics of the lithosphere resulting from the nature of
magmatic process and large ages of typical sections of the
lithosphere.

Figure 1. A schematic representation of midocean ridges 
and lithosphere plates based on [9], not to scale. The dark 
area represents the regenerated new mass M of basalt per 

unit length of midocean ridges. F is the force imparted 
by the lithosphere on the surroundings, v is ocean floor 
spreading, and P is the magma pressure. When magma 
pressure varies, the height, L, of the basalt produced  

varies as well.

Figure 2. A section of the oceanic lithosphere per unit 
length of midocean ridges, located at a distance x0 from 

the ridges based on [9], not to scale. The mobile coordinate 
system (t, T, z) moves with the lower boundary of the solid 
rocks of the lithosphere. The coordinates are time, t; tem-
perature, T; and position, z. The position of any point of 

the lithosphere is measured from the lower boundary of the 
lithosphere. The location of this boundary is variable with 
lithosphere dynamics and the origin of the coordinate sys-

tem, O, translate up for an increase in ocean floor spreading.

2.3 Re-analysis of the Fourier Equation
In Fig. 2, a section of the lithosphere along with a Carte-
sian coordinate system is presented based on [9]. The sec-
tion is located at a distance x0 from midocean ridges and 
has an initial thickness of d(t0). The lithosphere thickness 
is variable with time. The Fourier equation applies only 
to the solid rocks of the lithosphere. Accordingly, a mo-
bile Cartesian coordinate system is considered for time, 
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temperature, and vertical position (t, T, z) having origin, 
O, at the lower boundary of the lithosphere above which 
the lithosphere is assumed to be made of solid rocks. The 
lower boundary of the lithosphere is the interface location 
between solid rocks of the lithosphere and the ductile 
asthenospheric mantle. Below this interface, the ductile 
mantle exists and the Fourier equation does not apply. As 
the thickness of the lithosphere varies with ocean floor 
spreading, the position of the interface boundary moves 
up or down. The mobile coordinate system thus translates 
in the, z, direction with the lower boundary of the solid 
lithosphere. For oceanic lithosphere having increasing 
dynamics, Fig. (2) presents the related scenario. The 
thickness of the lithosphere, d, decreases infinitesimally 
from d0=d(t0) to d=d(t) according to the equality d=k4/v

1/2, 
where k4  is a constant of proportionality. In the region 
d(t0)-d(t), the Fourier equation does not apply for it is as-
sumed to convert to a ductile mantle. The Fourier equation 
for an arbitrary rectangular parallelepiped finite element 
of the solid lithosphere having a unit volume and a height 
that is equal to, dz, follows:

dT(t, z)/dt=[k/(ρ Cp)] ∂
2T(t, z)/∂z2+Qg/(ρ Cp)

 , [11]� (5)
Where T(t, z) is the average temperature of the finite 

element, °K; t, is the time in seconds; k, is the thermal 
conductivity of the selected arbitrary finite element of the 
solid lithosphere, J s-1 m-1 °K-1; ρ is the density of the rocks 
of the finite element, kg m-3; Cp, is the specific heat of the 
finite element, J kg-1 °K-1; and z is the vertical location of 
the finite element measured from the interface between the 
solid rocks of the lithosphere and the asthenospheric man-
tle. This interface moves upward because the thickness of 
the solid rocks decreases with an increase in ocean floor 
spreading. The finite element selected is small enough to 
assume that its thermodynamic properties to be reasonably 
uniform. The heat generated per unit volume, Qg, is equal 
to zero. The partial derivative of the temperature, ∂T(t, 
z)/∂z, is the slope of the temperature function T(t, z) on the 
T-z plane. It will be indicated by the symbol, S, for slope

S(t,z)=∂T(t,z)/∂z� (6)
Because variations occur infinitesimally and continu-

ously with time, the slope function such defined, S(t, z), 
may be expanded in a Taylor Series around an arbitrary 
state of equilibrium. Neglecting the remainder R

dS(t, z)=[∂S(t, z)/∂t]t=t0 dt+[∂S(t, z)/∂z]z=z0 dz� (7)
dS(t, z)/dt=[∂S(t, z)/∂t]t=t0+[∂S(t, z)/∂z]z=z0 dz/dt� (8)
The position, z, of any point of the solid rocks of the 

lithosphere measured from the origin, O, varies with re-
spect to the mobile coordinate system; it is unchanged 
with respect to a stationary coordinate system. The sta-
tionary coordinate system will be defined by (t, T, ζ) 
having origin Ω that coincides with the initial position, O, 

of the mobile coordinate system. Where ζ is the position 
of the finite element in consideration with respect to the 
stationary coordinate system. The relationship between 
positions of the two coordinate systems follows:

z=ζ-Δd� (9)
Where, z, is the position of the finite element with re-

spect to the mobile coordinate system, and ζ is the position 
of the same finite element with respect to the stationary 
coordinate system. For v=v0 at the time t=t0, the thickness 
of the lithosphere is equal to d(t0). After an infinitesimal 
period of time dt, v=v(t) and the thickness of the litho-
sphere is equal to d(t), where t=t0+dt. The function d(t) 
thus exists and can be assumed continuous and differen-
tiable between t0 and t. The difference between the initial 
thickness and the final thickness of the lithosphere d(t0)-
d(t) is equal to Δd, Fig 2. Neglecting R, Eq. (1) yields

Δd=d(t0)-d(t)=-[d{d(t)}/dt]t=t0 dt� (10)
On the other hand, Eq. (4) of the dynamic equilibrium 

section yields
d(v0)-d(v)=Δd=-k3 Δv=m1� (11)
Where m1 is a constant whose value is the same be-

tween any two consecutive states of dynamic equilibrium. 
The infinitesimal time, dt, can be obtained from Eq. (10) 
and Eq. (11)

dt=-m1/[d{d(t)}/dt]t=t0=m2� (12)
Where m2 is a constant for the slope of the d(t) func-

tion, [d{d(t)}/dt]t=t0 is a constant number. This slope 
calculated at t=t0 is about the same for all of the states of 
dynamic equilibrium, as this is clear from Eq. (4). If this 
equation is reproduced for d(t) and, t, instead of d(v) and , 
v,  and for section age nearly unchanged, G≈G0, the initial 
slope [d{d(t)}/dt]t=t0 is equal to a constant whose value is 
equal to (1/2) k2 G0

-1/2 [dG/dt]t=t0. The value of this last for-
mula is the same, constant, for any arbitrary initial state of 
dynamic equilibrium.

Equation (12) indicates that the states of dynamic equi-
librium are equally displaced in time, they reach dynamic 
equilibrium in equal periods of time. For the equilibrium 
state at the initial conditions, the thickness d(t)=d(t0) and 
Δd=0.This yields to z=ζ based on Eq. (9) and dz/dt=dζ/
dt. The position of the finite element, ζ, with respect to 
the stationary coordinates is unchanged with time and dζ/
dt=0. As a result, dz/dt=0 at the initial conditions and Eq. 
(8) yields 

dS(t, z)/dt=[∂S(t, z)/∂t]t=t0� (13)
The right hand of Eq. (13) includes a partial derivative 

with respect to the time only, ∂S(t, z)/∂t. Or the depth, z, 
can be treated as a constant. Accordingly, ∂S(t, z)/∂t=dS(t, 
z)/dt=[dS(t, z)/dt]t=t0=A=constant based on series expan-
sion of Eq. (1) and for R=0. This last equality yields to 
dS(t, z)/dt=A and its integration yields

Journal of Geological Research | Volume 01 | Issue 01 | April 2019



16  Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jgr.v1i1.458

S(t, z)=A t+C� (14)
Where C is a constant of integration. Eq. (14) reveals 

that the slope function, S(t, z), is independent of z. There-
fore, ∂S(t, z)/∂z=0, and based on Eq. (6), ∂2T(t, z)/∂z2=0. 
Because there is no heat production in the lithosphere, 
Qg=0, the Fourier Eq. (5) simplifies

dT(t, z)/dt=0� (15)
This equation (15) indicates that the temperature pro-

file, T(t, z), of the oceanic lithosphere is time independent 
and, z, is the only variable. As a result, ∂T(t, z)/∂z=dT(t, z)/
dz. Per definition of S(t, z), Eq. (6), then ∂T(t, z)/∂z=S(t, 
z)=dT(t, z)/dz. Based on this last equality and Eq. (14)

dT(t, z)/dz=A t+C� (16)
Equation (16) can be used to derive the temperature 

profile of the lithosphere as it displaces from one state of 
dynamic equilibrium to another. The time, t, of Eq. (16) 
cannot exceed the differential time, dt, between two con-
secutive states of dynamic equilibrium. For a complete 
transition from one state to another, t, must be equal to, dt, and 

dT(t, z)/dz=A dt+C� (17)
As discussed earlier, dt is a constant, Eq. (12), and Eq. 

(17) yields to 
dT(t, z)/dz=A m2+C=m3� (18)
Where m3 is a constant whose value is equal to -Q/

(k As) based on the solution of equations (5), (15), (18), 
the equality ∂T(t, z)/∂z=dT(t, z)/dz obtained earlier, and 
for Qg=0. The solution is a straightforward one, available 
in typical heat transfer text books, example [11]. Where 
Q is the earth's internal heat flux through the oceanic 
lithosphere, J s-1, and As is a constant that is equal to the 
surface area of the sphere enclosing the lithosphere at the 
finite element in consideration, m2. The sphere has a cen-
ter that coincides with the center of the earth. The thermal 
conductivity, k, of every finite element is reasonably uni-
form and constant but varies in value with depth from one 
finite element to another. Consequently

Q=-k As m3=-k As dT(t, z)/dz=constant� (19)
Solution of Eq. (18) for a state infinitesimally displaced 

from an initial state of equilibrium follows:
T(t, z)=m3 (z-z0)+T(t0, z0)� (20)
T(t, z)=dT(t, z)/dz x (z-z0)+T(t0, z0)� (21)
Where, t, and, z, are time and position infinitesimally 

displaced from the initial equilibrium conditions t0 and z0. 
Equation (21) gives the temperature of the first state of 
dynamic equilibrium displaced infinitesimally from the 
initial state of equilibrium. The procedure can be repeated 
for the second state of dynamic equilibrium by consid-
ering the first state as an initial condition until all of the 
period of time in consideration is simulated. 

Equation (21) can be transformed using the stationary 
coordinate system (t, T, ζ)

T(t, ζ)=dT(t, ζ)/dζ x (ζ-Δd-ζ0)+T(t0, ζ0)� (22)
For this coordinate transformation, z=ζ-Δd from Eq. (9). 

Because Δd is a constant based on Eq. (11), then dζ/dz=1. 
As a result, coordinate transformation of Eq. (18) yields 
to an equality between dT(t, z)/dz and dT(t, ζ)/dζ. The po-
sitions ζ and ζ0 are equal because they define the position 
of the same finite element at the time t=t0 and t=t with 
respect to the stationary coordinate system. Therefore ζ-ζ0 
of Eq. (22) is equal to zero. This discussion and equations 
(15), (19), and (22) yield respectively to the following 
summary:

T(t, z)=T(t0, z0)=T(t, ζ)=constant� (23)
Q=-k As x dT(t, ζ)/dζ=constant� (24)
T(t, ζ)=-dT(t, ζ)/dζ x Δd+T(t0, ζ0)� (25)

3. Results
Equation (23) represents an infinite number of planes par-
allel to the t-ζ coordinate plane, and Eq. (25) is an infinite 
number of inclined planes. The intersection between these 
two planes defines the temperature profile that satisfies 
lithosphere thermodynamics, which is a surface in the 
three dimensional space. The projection of this surface on 
any plane parallel to the T-ζ coordinate plane is a curve 
presented in Fig. 3 and Fig. 4. Boundary conditions are 
the temperature of oceanic crust, Ts, and asthenospheric 
mantle temperature Th.

At the initial time t=t0, Δd=0 and based on Eq. (25), 
T(t, ζ)=T(t0, ζ0) for every point of the curve, Fig. 3. With 
an increase in the dynamics of the lithosphere, the tem-
perature profile changes for Δd≠0. If ocean floor spreading 
increases, then Δd is positive and the quantity -dT(t, ζ)/dζ 
x Δd is positive for the geothermal gradients have a nega-
tive signs, which gives T(t, ζ)>T(t0, ζ0) based on Eq. (25). 
The temperature curve translates vertically as illustrated 
in Fig. 4. Or, the finite element assume higher temperature 
but its temperature remains on the temperature profile at 
which location the earth's internal heat flux to the oceanic 
lithosphere, Q, is constant. Any point on the temperature 
curve observes the same constant earth's internal heat 
flux, Q, based on Eq. (24). When the temperature of ocean 
floor increases by dTs, the floor assumes the value of the 
isotherms just below it such that the temperature of the 
oceanic floor remains on the temperature profile T(t, ζ). 
The earth's internal heat flux through the oceanic crust, Q, 
thus remains unchanged and 

dQ/dTs=0� (26)
Where Ts is sea temperature at ocean floor. The me-

chanical work delivered by the oceanic lithosphere to the 
surroundings, W, can be calculated by the energy balance 
of the lithosphere. Based on Fig. 2 

ML Cp dT(t, z)/dt=Q-Qo-W� (27)
Where
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ML = Mass of the oceanic lithosphere, kg.
Cp = Average specific heat of the lithosphere, J kg-1 °K-1.
T(t, z) = Temperature of the lithosphere, °K.
W = Mechanical work of the lithosphere exchanged 

with its surroundings, J yr-1.
Q = Earth's internal heat flux to the oceanic lithosphere, J yr-1.
Qo = Earth's internal heat flux rejected to the ocean, J yr-1.
Based on Eq. (15), dT(t, z)/dt=0 and Eq. (27) yields 

W=Q-Qo. Derivation of both sides of this last equality 
with respect to the sea temperature at ocean floor, Ts, bear-
ing in mind that dQ/dTs=0, Eq. (26), gives

dW/dTs = -dQo/dTs� (28)
Equation (28) associates variation in lithosphere dy-

namics, W, or geological activities, with sea temperature. 

Figure 3. Projection of the temperature profile of the oce-
anic lithosphere on the T-ζ plane of the stationary coor-

dinate system for the initial state of dynamic equilibrium 
when the time t=t0 and ocean floor temperature is equal to 

Ts. Where ζ is the vertical position of an arbitrary finite ele-
ment of the lithosphere measured from the initial location 
of the interface between solid rocks of the lithosphere and 
the ductile asthenospheric mantle having temperature Th .

Figure 4. The temperature profile projection of Fig. 3 
after the temperature of the ocean floor, Ts, has increased 

infinitesimally by dTs in the infinitesimal period of time dt.

4. Application equations
In this section, Eq. (28) will be used as basis to develop

practical equations to validate the theoretical thermal anal-
ysis of the lithosphere. Also, as an application example,
the geological activities resulting from the eleven-year
solar constant cycle will be calculated. The heat flux to
ocean Qo may be estimated

Qo = U A (Th-ts) (29)
Where
U = Overall heat transfer coefficient between astheno-

spheric mantle and ocean, J yr-1 m-2 °K-1.
A = Average heat transfer area of the oceanic litho-

sphere, m2.
th = Temperature of the asthenospheric mantle,

1553.20 °K.
ts = Temperature of surface water at ocean floor,

274.20 °K.
the value of the earth's internal heat to the ocean Qo

is equal to 70% of the total heat produced in the earth's
core of 1.5 x 1021 J yr-1, [12]. Asthenospheric mantle and
sea temperatures are obtained from [9]. Assuming that the
overall heat transfer coefficient remains unchanged with
the observed small rise in sea temperature, equations (28)
and (29) yield

dQo= -Qo dTs/(Th-Ts)                         (30)
dQo/dt = -8.21 x 1017dts/dt (31)
dW/dt= 8.21 x 1017dts/dt (32)
Equation (32) calculates annual trend of geological

activities by knowing total variation in the temperature of
ocean floor. This temperature variation must be equal to
variation in sea surface temperature. Otherwise, the ther-
mohaline circulation would cease frequently which is not
observed. In order to correlate trends of geological activ-
ities with the eleven-year solar constant cycle, empirical
equation correlating variation in the solar constant and
sea surface temperature is required. Accordingly, table 1
is prepared based on observed seasonal variation. Using
thermodynamics, it can be demonstrated that

ΔTs/T = -α ΔI/I (33)
Where
ΔTs=Variation in sea surface temperature, which is

equal to variation in the temperature of ocean floor,  °K.
T = Sea surface temperature, 286.90 °K.
α = Constant of proportionality, dimensionless.
I = Average value of the seasonal solar constant, 1367 W m-2.

From Table 1, the average value of α is 0.0378, and Eq.
(33) simplifies
ΔTs = -0.008 ΔI (34)

5. Discussion and conclusions
It is well known that slowly-occurring processes with time
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are characterized by linearity and conservation of process-
es characteristic parameters. Variations in the forces be-
tween the planets of the solar system occur slowly, which
yield to conservation of the angular momentum of planets
and length of the semi-major axis of the orbital planes.
When the length of the string of a pendulum is gradually
and slowly varied with time, the ratio between pendu-
lum energy and frequency remains constant, commonly
indicated as adiabatic invariant ratio. climate change
parameters vary deferentially with time and linearity of
climate parameters is observed where natural variability is
small or can be filtered. Reference [13] reveals that strato-
spheric cooling occurs at levels following climate pertur-
bations. At each level temperature trend is practically lin-
ear. so is sea level rise [14]. the rise appears to proceed at
campaigns, each having practically linear trend. the same
must be true for the lithosphere. the spreading of ocean
floor is so infinitesimal compared with floor's length and
its variation is infinitesimal as well. The physical parame-
ters of the oceanic lithosphere associated with this spread-
ing must exhibit linearity, constant change, or adiabatic
invariant values. Based on this work, spreading of the
oceanic lithosphere varies linearly with time, and its rate
of change remains constant with changes in ocean floor
spreading. The same is true for the thickness of the ocean-
ic lithosphere at virtually every section. these conclusions
are intrinsic properties of the oceanic lithosphere resulting
from the nature of magma generation and solidification at
midocean ridges. the process is so slow compared with
the time required to regenerate the full ocean floor.

As a result, Fourier equation re-analysis yielded to a 
constant earth's internal heat flux through the oceanic lith-
osphere. This adiabatic invariant nature of the heat flux 
is an intrinsic property of the solid earth. Any variation 
in the temperature of ocean floor adhering to the oceanic 
lithosphere does not alter the value of the heat flux. The 
temperature profile of the lithosphere remains unchanged; 
it only translates up and down with variations in sea tem-
perature and the earth's internal heat flux in every section 
remains the same. While the temperature of each section 
of the solid rocks of the oceanic lithosphere varies, the 
thickness of the rocks varies as well, proportionally, to 
maintain a constant heat flux through the oceanic litho-
sphere. 

If the sphere of the solid earth enclosing the inter-
face between lithosphere and asthenospheric mantle is 
considered as a thermodynamic system. The system as 
defined only exchanges earth internal heat with the oce-
anic and continental lithospheres located above it. Matter 
exchanged is replaced in kind and system mass may be 
assumed as a constant. Therefore, the system as defined 
may be considered as a closed thermodynamic system. 
Because, the generated heat rate in the earth's core is con-
stant for the foreseeable future and the internal heat flux 
to the oceanic lithosphere is adiabatic invariant, then the 
internal heat flux to the continental lithosphere is constant. 
The mass and heat balance of the thermodynamic system 
as defined leads to a constant temperature of the solid 
earth. 

A constant heat flux in spite of variation in sea tem-

Month/Description Solar Constant Observed  Observed  α

I, W/m2 T, °C T, °K

January 1409.10 15.80 289.00 0.0390

February 1399.00 15.90 289.10 0.0387

March 1379.50 15.90 289.10 0.0382

April 1358.90 16.00 289.20 0.0376

May 1352.00 16.30 289.50 0.0374

June 1323.80 16.40 289.60 0.0366

July 1321.50 16.40 289.60 0.0365

August 1330.70 16.40 289.60 0.0368

September 1350.80 16.20 289.40 0.0373

October 1372.50 15.90 289.10 0.0380

November 1396.30 15.80 289.00 0.0387

December 1408.10 15.70 288.90 0.0390

Table 1. Observed monthly average Sea Surface Mean Temperature, T, and solar constant, I. The observed temperature 
is obtained from [15] for the Base Period 1901 to 2000. Values of seasonal solar constant are provided by [16]. 
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perature yields to Eq. (28), which is an application of the 
first law of thermodynamics on the oceanic lithosphere. 
Variation in sea temperature varies the mechanical energy 
exchanged between the oceanic lithosphere and the sur-
rounding continents. An increase in sea temperature with 
time decreases the heat flux from the lithosphere to the 
ocean, Qo. The term, dQo/dTs, has a negative sign and the 
geological activities increases. Conversely, if ocean tem-
perature decreases, the heat flux from the lithosphere to 
the ocean increases and the term dQo/dTs is positive. The 
geological activities decrease as a result. 

It should be noted that variation in the heat transferred 
between the mature lithosphere and ocean with the ob-
served sea temperature rise is negligible for this litho-
sphere is thick. The lithosphere at midocean ridges on the 
other hand is thin or yet to be formed, and variation in the 
heat transferred is not negligible. Therefore, midocean 
ridges experience thermodynamic changes with sea tem-
perature variation, and these changes are transmitted to 
the entire lithosphere. Every section of the mature litho-
sphere will thus experience constant change and linearity 
of ocean floor spreading and section thickness. Equations 
(23), (24), (25), (26), and (28) are thus valid for the entire 
oceanic lithosphere including mature sections as well.

causes of ocean temperature variation include but not
limited to climate change, seasonal variation, and elev-
en-year solar constant cycle. contrary to common percep-
tion, surface temperature increases when the value of the
solar constant decreases and vice versa. Average sea sur-
face temperature is on the rise and it assumes maximum
values in the northern hemispheric summer when the
value of the solar constant approaches minimum values.
these periods of solar constant minima should observe
higher intensity of geological activities than average.
they include but not limited to seismic activities, volcanic
eruptions, and rise of midocean ridges. For the observed
present sea temperature rise of 0.6 °K, Eq. (32) gives an-
nual trend of geological activities of 4.93 x 1017 J yr-1. the
calculated value by [4] using thermodynamics is 1.05 x 1017

J yr-1, and the observed trend is 3.0 x 1017 J yr-1. the theo-
retical thermal analysis, therefore, yields results that are
of the same order of magnitude of  observations and work
of others. Accordingly, annual trend of geological activi-
ties resulting from the eleven-year solar constant cycle is
calculated using equations (32) and (34) and presented in
Fig. 5. the figure reveals that at solar constant minima,
the eleven-year solar constant cycle is capable of inducing
1.56 x 1016 J yr-1 of geological activities, equivalent to
magnitude 7.6 earthquakes. The observations of  Gulyae-
va [1] are in agreement with this work.
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