Road Network Analysis with GIS and GRASS-GIS: A Probabilistic Approach

Giuseppe Caristi (Department of Economics, University of Messina, Italy)
Roberto Guarneri (Department of Economics, University of Messina, Italy)
Sabrin Lo Bosco (Pegaso Telematic University, Italy)


In this paper we show how it can be useful to the probability of intersections in the determination of a classification rule for raster conversions in Geographical Information System (GIS) and GRASS GIS for the Road Network Analysis (RNA). We use a geometric probabilities approach for irregular path considering these results for transportation planning operations. We study two particular problems with irregular tessellations, in order to have a situation more realistic respect to map GIS and considering also the maximum value of probability to narrow the range of possible probability values.


Road network analysis; GIS; GRASS GIS; Probabilistic approach; Irregular tessellation

Full Text:



[1] D. Barilla, G. Caristi, A. Puglisi, 2014, A Buffon-Laplace type problems for an irregular lattice with maximum probability, Applied Mathematical Sciences,vol. 8, no. 165, pp. 8287-8293.

[2] V. Bonanzinga and L. Sorrenti, 2008, Geometric Probabilities for three-dimensional tessellations and raster classifications, Serie on Advances in mathematics for Applied Sciences, vol. 82, pp.111-122.

[3] B. Boots, 1998, Spatial tessellations, in Geographic Information Systems: Priciples, Techniques Iussues,2nd Edition, edited by P.A. Longley, M. F. Goodchild, D. J. Maguire, D. W. Rhind (New york:Wiley & Sons), pp. 503-526.

[4] P. A. Burrough and R. A. McDonnel, 1998, Principles of Geographical Information Systems,Oxford University Press.

[5] G. Caristi, V. Fiorani, S. Lo Bosco and A. Vieni,2019, Project management and optimization processes choices to maximize resource allocation results,Applied Mathematical Sciences, vol. 13 (17), pp.845-857.

[6] A. Duma and M. Stoka, 2000, Geometric probabilities for convex bodies of revolution in the euclidean space E3, rend. Circ. Mat. Palermo, serie II Suppl.65, pp. 109-115.

[7] A. Duma and M. Stoka, 2004, Goemetric probabilities for quadratic lattice with quadratic obstacles,Ann. I.S.U.P., 48/1-2, pp. 19-42.

[8] M. F. Gooldchild and A. M. Shotridge, 2002, Geometric probability and GIS: some applications for the statistics of intersections, International Journal of geographical Information Sciences, 16/3, pp. 227-243.

[9] H. R. Kirby, 1997, Buffon’s Needle and probability of intercepting short-distance trips by multiple screen-line surveys, Geographical Analysis, 29, pp.64-71.

[10] D. A. Klain and G. C. Rota, 1997, Introduction to Geometric Probability, Cambridge University Press.

[11] H. Mitasova and M. Neteler, 2004, Open souces GIS:a GRASS GIS approach, 2nd Edition,Kluwer Academic Publishers.

[12] H. Poincaré, Calcul des probabilités, 1912, 2nd ed.,Gauthier-Villard, Paris.

[13] L. A. Santalò, 1976, Integral Geometry and Geometric Probability, Addison Wesley, Mass.

[14] P. A. Rogerson, 1990, Buffon’s needle and the estimation of migration distances, Mathematical Population Studies, 2, pp. 229-238.

[15] M. Stoka, 1982, Probabilità e Geometria, Herbita.

[16] M. Stoka, 1975-1976, Probabilitiés géométriques de type Buffon dans le plan euclidien, Atti Acc. Sci. Torino, 110, pp. 53-59.



  • There are currently no refbacks.
Copyright © 2021 Giuseppe Caristi, Roberto Guarneri, Sabrin Lo Bosco

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.