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Over the last decade, deep learning (DL) methods have been extremely 
successful and widely used in almost every domain. Researchers are now 
focusing on the convergence of medical imaging and drug design using 
deep learning to revolutionize medical diagnostic and improvement in 
the monitoring from response to therapy. DL a new machine learning 
paradigm that focuses on learning with deep hierarchical models of data. 
Medical imaging has transformed healthcare science, it was thought of as a 
diagnostic tool for disease, but now it is also used in drug design. Advances 
in medical imaging technology have enabled scientists to detect events 
at the cellular level. The role of medical imaging in drug design includes 
identification of likely responders, detection, diagnosis, evaluation, therapy 
monitoring, and follow-up. A qualitative medical image is transformed 
into a quantitative biomarker or surrogate endpoint useful in drug 
design decision-making. For this, a parameter needs to be identified that 
characterizes the disease baseline and its subsequent response to treatment. 
The result is a quantifiable improvement in healthcare quality in most 
therapeutic areas, resulting in improvements in quality and life duration. 
This paper provides an overview of recent studies on applying the deep 
learning method in medical imaging and drug design. We briefly discuss 
the fields related to the history of deep learning, medical imaging, and drug 
design. 
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1. Introduction

Even though deep learning algorithms exist for over 
a decade, their applications to solve real-world problems 
were very slow due to limited data and hardware compu-
tational power. Its booms started in 2016 when a model 
built using a deep learning algorithm (Alpha Go) beat 
the world champion player of Go[1]. This rejuvenates the 
researchers’ interest in using deep learning algorithms to 

solve their various domain problems, especially in medi-
cal imaging and drug design. 

Deep learning is an extension of an artificial neural net-
work (ANN) that has been around for over three decades. 
This network work is based on mimicking human brain 
neurons [1]. An ANN is a shallow network consisting of 
an input layer, a single hidden layer, and an output layer, 
as shown in Fig.1. Each node in the input layer corre-
sponds to a feature that is sent to the hidden layers. Upon 
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receiving the features (data), the hidden layer performs 
some computation on the data and transfers them to the 
output layer, where results are generated. The difference 
between target output values and the desired output val-
ue is calculated using the back-propagation algorithm [2]. 
These errors are propagated back to the input, and weight 
adjustment is mostly made using stochastic gradient de-
scent [3]; this process continues until the error is negligible. 
Deep learning has drastically increased machine learning 
algorithms’ performance, primarily due to the reduction 
or complete elimination of feature engineering [4] as shown 
in Fig.2. The algorithms can extract features themselves 
and use those extracted features to either predict, classify, 
or cluster depending on the task performed. Recent de-
velopment of computing capabilities, especially graphics 
processing units (GPUs) used in speeding up the complex 
calculations performed by the various algorithms, helps 
increase deep learning algorithms [5]. 

Advancement of technology, data availability, and im-
provement of existing algorithms are vital factors for the 
recent success of deep learning [4]. 

Figure 1. Artificial neural network

Figure 2. Machine learning vs Deep Learning

The ability to build a deep network with hundreds of 
hidden layers and millions of neurons give deep learn-
ing an edge over ANN, which mostly fails with more 

than four (4) hidden layers. Deep learning models have 
hyper-parameters such as activation function, learning 
rate, hidden layers, and many neurons which are essential 
factors to consider while designing your model. For med-
ical images and drug discovery, the common activation 
function used is a rectified linear unit (RELU) [6]; in some 
instances, it variant like leaky RELU [7] is used. Model 
overfitting poses a significant challenge while training 
a deep network. Most of the models face this challenge 
where they learned all the features during the training but 
fails to perform the task during testing, i.e., using different 
datasets with the one used during the training. Regular-
ization [8] and dropout [9] are commonly used techniques to 
reduce overfitting to solve this problem. 

To test the robustness of deep learning, many re-
searchers have built different models, one with machine 
learning and the other with deep learning, and used the 
same datasets to compare their performance. Various 
impressive results were obtained from the investigation 
conducted by [10-12] that deep learning models do not have 
superior performance over their machine learning counter 
fact without a large amount of training data. These exper-
iments have shown that deep learning models performed 
better with a large number of training datasets.

Convolutional Neural Network (CNN) [13], Deep Belief 
Network (DBN) [14], Sparse and Variable Auto encoders [15] 
are among the commonly used deep learning algorithms in 
medical images and drug discovery. Selecting an algorithm 
depends on the task you want to perform. For medical 
image classification, different researchers used different ar-
chitecture. The model proposed by [15] used CNN, and Auto 
encoders are used on the one proposed by [16]. Similarly, 
Auto encoders are used in drug discovery in the model 
proposed [17]. Generally, CNN is the most widely used ar-
chitecture for image classification due to the robustness of 
pooling layers, and integrating dropout in the network has 
substantially decrease overfitting. 

Even though Bayesian Network [18], Decision Tree [19], 
and Support Vector Machine (SVM) [20] are the most 
commonly used machine learning algorithms for drugs 
design and discovery, as shown in Fig. 3; recent trends 
of deep learning made it possible to make a substantial 
inroad to be among the algorithm used in drug discov-
ery [1]. CNN, Autoencoders, Recurrent Neural Network 
(RNN), and other generative models are algorithms used 
in drug discovery and design [21-22].
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Figure 3. Analyzing the total number of publications us-
ing different machine learning algorithm for drugs design 

and discovery

2. Deep Learning in Medical Imaging

In a comparative analysis, deep learning models used 
in medical image analysis outperformed their counter fact 
of machine learning in anomaly detection, localization, 
image registration, segmentation, and diagnosis. 

Most of the proposed medical image models are super-
vised learning based in nature; as such, annotated training 
data from experts are required to train them. Regrettably, 
obtaining training data in medical imaging is time-con-
suming, costly, and prone to errors. Furthermore, each 
medical image field has a separate template of the training 
process. This limitation has hindered the progress of the 
application of deep learning in medical images for years. 
The limitation was eliminated by the research performed 
by [23]. They proposed a general learning model that au-
tomatically extracts image pixel features; their model is 
flexible enough to be applied to any medical image field. 

Clear separation of healthy and unhealthy body organs 
makes medical image segmentation one of the areas that 
received high research attention. Moreover, segmenta-
tion accuracy is the precursor of successful diagnosis 
and prevention. As such, various automated models were 
proposed to this effect [24]. The model proposed by [25] used 
automated image processing and clustering algorithms 
(K-means and expectation-maximization) to segment 
brain tumor. To improve spatial-temporal consistency 
of cardiac MRI segmentation, a hybrid spatio-temporal 
network (HST-Net) was proposed by [26]. Segmentation of 
children brain (from birth to age of 5) using MRI imaging 
is considered challenging to perform mainly due to noise 
increase, high volume effect, and minimization of tissue 
content [27], a CNN architecture model proposed by [28] to 

segment children brain solved the problems. The model 
proposed by [29] used both 2D and 3D CNN architecture 
to perform end-to-end volumetric segmentation of cardiac 
images. 

Lesion and abnormality detections are a source of 
concern to many researchers in medical imaging due to 
the images’ misclassification. With deep learning, various 
classifiers are used to classify images using binary classi-
fication. The models proposed by [30-32] used DNN architec-
ture to detect and classify coronary classification of vein 
artery, cerebral microbleeds and, healthy and unhealthy 
skins.

3. Deep Learning in Drug Design

Complex molecule structure makes drug discovery 
and designs a challenging task to perform by the re-
searchers in pharmacology and cheminformatics. This 
complexity arises from the hidden features among the 
molecules and features extracted from the molecules 
with artificial neural network models like SVM, decision 
tree, and genetics algorithm, which is a further step to-
ward simplifying the drug design and development pro-
cess [33-34]. The recent advances in deep learning have re-
duced the complexity of discovering molecule structures 
and their relationship within a compound. The impor-
tance of revealing their compound structure in obtaining 
qualitative classifiers or quantitative structure-activity 
relationship (QSAR) models. 

For years, earlier research in the drug design domain 
continued to use human engineering to handcrafted mol-
ecule features descriptors. Even though some successes 
were reported in [35-38], deep learning benefits, like directly 
learning high powerful features among the molecules, 
are missing. Researchers have question that remained 
unanswered for years; can molecule complexity and hid-
den features structure be resolve by shifting from human 
engineering features extraction to deep learning models?  
Hilton Group took the challenge and proposed the first 
deep learning model for drug design and won the Merck 
Kaggle challenge 2012 (https://www.kaggle.com/c/Mer-
ckActivity). Similarly, a collaborative work between Hil-
ton Group and Google in the subsequent year led to many 
research papers on deep learning-based QSAR modeling 
using different DNN architecture to perform multiple 
tasks. To imitate compound and protein interaction, dif-
ferent weights are given to the compound and protein fea-
tures. These features become the input of the first hidden 
layer; thus, the model training is accelerated. The amount 
of training data does not show any significant effect on 
model performance [39]. Using this technique, a DNN 
model for drug discovery called AtomNet was proposed 
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by [40]. This model was the first to utilize deep CNN archi-
tecture to extract compound features in drug analysis and 
discovery. The back-bone of drug design lies in the feature 
identification of compound-protein interaction. A model 
that can predict this interaction and protein sequence gen-
eration was proposed by [41]. The reason for the difficulty 
of adapting deep learning in drug discovery has to do 
with molecules structure. The model proposed by [42] used 
several features and chemical properties to predict mole-
cule structure in drug discovery. Their model has shown 
robust performance compared to the rest of the model in 
the same category. The model proposed by [17] was the first 
that used unsupervised learning in drug design. They used 
a seven-layer Generative Adversarial Network (GAN) to 
screen a compound. To differentiate their model from the 
traditional compound screening methods using QSAR, 
they extracted features from input molecular fingerprints 
and generated new fingerprints that they used for training 
and testing their model. Their model outperformed all the 
traditional QSAR compound, screening models.

4. Conclusion and Promising Future

As we explained in this paper, different deep learning 
models have been applied to different medical imaging 
and drug discovery tasks as depicted in Fig.4 , which 
have achieved high performance with huge training data 
availability. The same performance was not obtained 
with a small amount of training data. This has shown that 
the success of any deep learning model depends on data. 
Some researchers [43] view that ANN models have the same 
performance precedence as deep learning models without 
enough training data. The question researchers continue to 
ask is how to quantify the amount of enough training data, 
and this has become a topic of discussion among them. 
Even though various techniques like transfer learning are 
developed to mitigate the scarcity of training data, its ef-
fectiveness varies across different domains and tasks to 
perform. Similarly, hyper-parameters tuning, the number 
of hidden layers, and the type of activation function used 
are also difficult to decide because each model performs 
best using different activation function and hyper-parame-
ters values. 

Even though deep learning has achieved almost the 
same accuracies as a human being, especially in image 
classification and segmentation using well-annotated 
datasets [44-45], their full adaptation in compound structures 
domain like drugs design and discovery [45] is problem-
atic due to high constraint of the number of input features 
the models accept especially RNN, CNN and Restricted 
Boltzmann Machine [47] architectures. Simultaneously, 
high-performance models that perform various medical 

imaging tasks with limited training data are absent. This 
has continued to slow down deep learning models on lung 
cancer, liver, and spinal code injuries.

In the final analysis, although many successes have 
been recorded of using deep learning in both medical 
imaging, drug design, and discovery, development and 
improvements of models that will perform well with a 
limited amount of data are in dire need. Furthermore, deep 
learning models that can extract disease structure from the 
medical image is highly needed in our health care system. 
Additionally, to solve the problem associated with deep 
learning in compound structure domains like drug design 
and discovery, there is a need to optimize model archi-
tecture that will automatically extract useful molecule 
features and infer that the compound’s relationship can be 
easily observed. Models that can perform these tasks will 
out rightly speedup drug design and clinical trials, reduc-
ing the time taken to produce drugs.  

Figure 4. Application of Deep Learning from Medical 
Imaging to Drug Design
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