Impact of Connexins on Atherogenesis: A Brief Review

Veronika A. Myasoedova (Institute of General Pathology and Pathophysiology)
Dongwei Zhang (Beijing University of Chinese Medicine)
Reinhard Wetzker (Klinik für Anästhesiologie und Intensivmedizin Universitätsklinikum Jena)
Andrey V. Grechko (Federal Scientific Clinical Center for Resuscitation and Rehabilitation)
Alexander Nikolaevich Orekhov (Skolkovo Innovative Center and Institute of Gene Biology)

Article ID: 184

DOI: https://doi.org/10.30564/jim.v7i2.184

Abstract


Connexins family in humans consists of 21 highly conserved proteins that are responsible for contact formation between cells. On the cell surface, connexins form hemichannels, or connexons. Two hemichannels brought together form a gap junction, a form of intercellular contact that allows for direct transfer of material and signals between the adjacent cells. Gap junctions serve for transporting ions and other soluble, low molecular weight molecules therefore synchronizing the microenvironment of the contacting cells and maintaining cell and tissue homeostasis. Impairment of gap junctions is associated with different pathological conditions. Importantly, it has been described in atherosclerosis, which causes local cellular dysfunction in the arterial wall tissues followed by the development of atherosclerotic plaque. There are 3 main connexins expressed in human cardiovascular system: Cx37, Cx40, and Cx43. Alterations in the arterial wall cells observed in atherosclerosis include changes in the expression pattern of the main connexins and impairment of intercellular contacts and communication. According to the currently available data, Cx37 and Cx40 have anti-atherogenic and vasculoprotective properties, while Cx43 appears to be more pro-atherogenic. However, the effects of connexins are cell type-dependent and in many cases, remain to be studied in detail. In this review, we summarize the available knowledge on connexins of the arterial wall cells involved in atherosclerosis development.


Keywords


Connexin; Connexon; Gap junction; Atherosclerosis; Vascular wall

Full Text:

PDF

References


[1] Viles-Gonzalez JF, Fuster V, Badimon JJ. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J 2004;25:1197-207 doi:10.1016/j.ehj.2004.03.011

[2] Sobenin I, Galitsyna E, Grechko A, et al. Small dense and desialylated low density lipoprotein in diabetic patients. Vessel Plus 2017;1:29-37. doi:http://dx.doi.org/10.20517/2574-1209.2016.12

[3] Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med 1999;340:115-26 doi: 10.1056/NEJM199901143400207

[4] Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol 2015;6:365 doi: 10.3389/fphys.2015.00365

[5] Roy H, Bhardwaj S, Yla-Herttuala S. Molecular genetics of atherosclerosis. Hum Genet 2009;125:467-91 doi: 10.1007/s00439-009-0654-5

[6] Lin J, Kakkar V, Lu X. Impact of matrix metalloproteinases on atherosclerosis. Curr Drug Targets 2014;15:442-53 doi: 10.2174/1389450115666140211115805

[7] Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxf) 2015;213:539-53. doi: 10.1111/apha.12438

[8] Chistiakov DA, Sobenin IA, Orekhov AN. Vascular extracellular matrix in atherosclerosis. Cardiol Rev 2013;21:270-88. doi: 10.1097/CRD.0b013e31828c5ced

[9] Brisset AC, Isakson BE, Kwak BR. Connexins in vascular physiology and pathology. Antioxid Redox Signal 2009;11:267-82 doi: 10.1089/ars.2008.2115

[10] Saez JC, Berthoud VM, Branes MC, et al. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003;83:1359-400 doi: 10.1152/physrev.00007.2003

[11] Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res 2004;62:228-32 doi: 10.1016/j.cardiores.2003.11.013

[12] Evans WH, Martin PE. Gap junctions: structure and function (Review). Mol Membr Biol 2002;19:121-36 doi: 10.1080/09687680210139839

[13] Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 2007;94:120-43 doi: 10.1016/j.pbiomolbio.2007.03.011

[14] Scemes E, Suadicani SO, Dahl G, et al. Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 2007;3:199-208 doi: 10.1017/S1740925X08000069

[15] Münzel T, Sinning C, Post F, et al. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann Med 2008;40:180-96 doi: 10.1080/07853890701854702

[16] Luo S, Lei H, Qin H, et al. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des 2014;20:3548-53 doi: 10.2174/13816128113196660746

[17] Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87:315-424 doi: 10.1152/physrev.00029.2006

[18] Pfenniger A, Chanson M, Kwak BR. Connexins in atherosclerosis. Biochim Biophys Acta 2013;1828:157-66 doi: 10.1016/j.bbamem.2012.05.011

[19] Kwak BR, Mulhaupt F, Veillard N, et al. Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2002;22:225-30

[20] Gabriels JE, Paul DL. Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 1998;83:636-43 doi: 10.1161/01.RES.83.6.636

[21] van Rijen HV, van Kempen MJ, Postma S, et al. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine 1998;10:258-64 doi: 10.1006/cyto.1997.0287

[22] Même W, Calvo CF, Froger N, et al. Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB J 2006;20:494-6 doi: 10.1096/fj.05-4297fje

[23] Pfenniger A, Derouette JP, Verma V, et al. Gap junction protein Cx37 interacts with endothelial nitric oxide synthase in endothelial cells. Arterioscler Thromb Vasc Biol 2010;30:827-34 doi: 10.1161/ATVBAHA.109.200816

[24] Kameritsch P, Khandoga N, Nagel W, et al. Nitric oxide specifically reduces the permeability of Cx37-containing gap junctions to small molecules. J Cell Physiol 2005;203:233-42 doi: 10.1002/jcp.20218

[25] Meens MJ, Alonso F, Le Gal L, et al. Endothelial Connexin37 and Connexin40 participate in basal but not agonist-induced NO release. Cell Commun Signal 2015;13:34 doi: 10.1186/s12964-015-0110-1

[26] Alonso F, Boittin FX, Bény JL, et al. Loss of connexin40 is associated with decreased endothelium-dependent relaxations and eNOS levels in the mouse aorta. Am J Physiol Heart Circ Physiol 2010;299:H1365-73 doi: 10.1152/ajpheart.00029.2010

[27] Pfenniger A, Wong C, Sutter E, et al. Shear stress modulates the expression of the atheroprotective protein Cx37 in endothelial cells. J Mol Cell Cardiol 2012;53:299-309 doi: 10.1016/j.yjmcc.2012.05.011

[28] Chistiakov DA, Orekhov AN, Bobryshev YV. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf) 2017;219:382-408 doi: 10.1111/apha.12725

[29] Pfenniger A, Meens MJ, Pedrigi RM, et al. Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37. Atherosclerosis 2015;243:1-10 doi: 10.1016/j.atherosclerosis.2015.08.029

[30] Chadjichristos CE, Morel S, Derouette JP, et al. Targeting connexin 43 prevents platelet-derived growth factor-BB-induced phenotypic change in porcine coronary artery smooth muscle cells. Circ Res 2008;102:653-60 doi: 10.1161/CIRCRESAHA.107.170472

[31] Zernecke A, Bidzhekov K, Ozüyaman B, et al. CD73/ecto-5'-nucleotidase protects against vascular inflammation and neointima formation. Circulation. 2006;113(17):2120-7. doi: 10.1161/CIRCULATIONAHA.105.595249.

[32] Stevens HY, Melchior B, Bell KS, et al. PECAM-1 is a critical mediator of atherosclerosis. Dis Model Mech 2008;1:175-81; discussion 179 doi: 10.1242/dmm.000547

[33] Yuan D, Sun G, Zhang R, et al. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins. Mol Med Rep 2015;12:7146-52 doi: 10.3892/mmr.2015.4273

[34] Eugenín EA, Brañes MC, Berman JW, et al. TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 2003;170:1320-8 doi: 10.4049/jimmunol.170.3.1320

[35] Yuan D, Wang Q, Wu D, et al. Monocyte-endothelial adhesion is modulated by Cx43-stimulated ATP release from monocytes. Biochem Biophys Res Commun 2012;420:536-41. doi: 10.1016/j.bbrc.2012.03.027

[36] Chistiakov DA, Bobryshev YV, Orekhov AN. Neutrophil's weapons in atherosclerosis. Exp Mol Pathol 2015;99:663-71 doi: 10.1016/j.yexmp.2015.11.011

[37] Liu Y, Fu YQ, Peng WJ, et al. Rutaecarpine reverses the altered connexin expression pattern induced by oxidized low-density lipoprotein in monocytes. J Cardiovasc Pharmacol 2016;67:519-25 doi: 10.1097/FJC.0000000000000372

[38] Nikiforov N, Galstyan K, Nedosugova L, et al. Proinflammatory monocyte polarization in type 2 diabetes mellitus and coronary heart disease. Vessel Plus 2017;1:192-5 doi:http://dx.doi.org/10.20517/2574-1209.2017.21

[39] Gomes AL, Carvalho T, Serpa J, et al. Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis. Blood 2010;115:3886-94 doi: 10.1182/blood-2009-08-240580

[40] Tavora FR, Ripple M, Li L, et al. Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc Disord 2009;9:27 doi: 10.1186/1471-2261-9-27

[41] Branes MC, Contreras JE, Sáez JC. Activation of human polymorphonuclear cells induces formation of functional gap junctions and expression of connexins. Med Sci Monit 2002;8:BR313-23

[42] Eltzschig HK, Eckle T, Mager A,et al. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 2006;99:1100-8 doi: 10.1161/01.RES.0000250174.31269.70

[43] Chistiakov DA, Orekhov AN, Bobryshev YV. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 2016;221:1014-33 doi: 10.1016/j.imbio.2016.05.010

[44] Oviedo-Orta E, Hoy T, Evans WH. Intercellular communication in the immune system: differential expression of connexin40 and 43, and perturbation of gap junction channel functions in peripheral blood and tonsil human lymphocyte subpopulations. Immunology 2000;99:578-90 doi: 10.1046/j.1365-2567.2000.00991.x

[45] Mendoza-Naranjo A, Bouma G, Pereda C, et al. Functional gap junctions accumulate at the immunological synapse and contribute to T cell activation. J Immunol 2011;187:3121-32 doi: 10.4049/jimmunol.1100378

[46] Bopp T, Becker C, Klein M, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 2007;204:1303-10 doi: 10.1084/jem.20062129

[47] Wang J, Cheng X, Xiang MX, et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice. J Clin Invest 2011;121:3564-77 doi: 10.1172/JCI46028

[48] Machtaler S, Dang-Lawson M, Choi K, et al. The gap junction protein Cx43 regulates B-lymphocyte spreading and adhesion. J Cell Sci 2011;124:2611-21 doi: 10.1242/jcs.089532

[49] Machtaler S, Choi K, Dang-Lawson M, et al. The role of the gap junction protein connexin43 in B lymphocyte motility and migration. FEBS Lett 2014;588:1249-58 doi: 10.1016/j.febslet.2014.01.027

[50] Machlus KR, Thon JN, Italiano JE Jr. Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol 2014;165:227-36 doi: 10.1111/bjh.12758

[51] Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost 2015;114:449-58 doi: 10.1160/TH14-12-1067

[52] Totani L, Evangelista V. Platelet-leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol 2010;30:2357-61 doi: 10.1161/ATVBAHA.110.207480

[53] Angelillo-Scherrer A1, Fontana P, Burnier L, et al. Connexin 37 limits thrombus propensity by downregulating platelet reactivity. Circulation 2011;124:930-9 doi: 10.1161/CIRCULATIONAHA.110.015479

[54] Vaiyapuri S, Jones CI, Sasikumar P, et al. Gap junctions and connexin hemichannels underpin hemostasis and thrombosis. Circulation 2012;125:2479-91 doi: 10.1161/CIRCULATIONAHA.112.101246

[55] Vaiyapuri S, Moraes LA, Sage T, et al. Connexin40 regulates platelet function. Nat Commun 2013;4:2564 doi: 10.1038/ncomms3564

[56] Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015;214:33-50 doi: 10.1111/apha.12466

[57] Boyle JJ, Weissberg PL, Bennett MR. Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 2003;23:1553-8 doi: 10.1161/01.ATV.0000086961.44581.B7

[58] Rennick RE, Connat JL, Burnstock G, et al. Expression of connexin43 gap junctions between cultured vascular smooth muscle cells is dependent upon phenotype. Cell Tissue Res 1993;271:323-32

[59] Rama A, Matsushita T, Charolidi N, et al. Up-regulation of connexin43 correlates with increased synthetic activity and enhanced contractile differentiation in TGF-beta-treated human aortic smooth muscle cells. Eur J Cell Biol 2006;85:375-86 doi: 10.1016/j.ejcb.2005.11.007

[60] Chadjichristos CE, Scheckenbach KE, van Veen TA, et al. Endothelial-specific deletion of connexin40 promotes atherosclerosis by increasing CD73-dependent leukocyte adhesion. Circulation 2010;121:123-31 doi: 10.1161/CIRCULATIONAHA.109.867176

[61] Zhang X, Wang X, Zhou X, et al. Phenotypic transformation of smooth muscle cells from porcine coronary arteries is associated with connexin 43. Mol Med Rep 2016;14:41-8 doi: 10.3892/mmr.2016.5286

[62] Blackburn JP, Peters NS, Yeh HI, et al. Upregulation of connexin43 gap junctions during early stages of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1995;15:1219-28 doi: doi.org/10.1161/01.ATV.15.8.1219

[63] Plenz G, Ko YS, Yeh HI, et al. Upregulation of connexin43 gap junctions between neointimal smooth muscle cells. Eur J Cell Biol 2004;83:521-30 doi: 10.1078/0171-9335-00417

[64] Orekhov AN, Andreeva ER, Bobryshev YV. Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions. Tissue Cell 2016;48:25-34 doi: 10.1016/j.tice.2015.11.002

[65] Arishiro K, Hoshiga M, Ishihara T, et al. Connexin 43 expression is associated with vascular activation in human radial artery. Int J Cardiol 2010;145:270-2 doi: 10.1016/j.ijcard.2009.09.479

[66] Cherepanova OA, Pidkovka NA, Sarmento OF, et al. Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ Res 2009;104:609-18 doi: 10.1161/CIRCRESAHA.108.186064

[67] Shi Y, Hou X, Zhang X, et al. Inhibition of oxidized-phospholipid-induced vascular smooth muscle cell proliferation by resveratrol is associated with reducing Cx43 phosphorylation. J Agric Food Chem 2013;61:10534-41 doi: 10.1021/jf4036723

[68] Andreeva ER, Serebryakov VN, Orekhov AN. Gap junctional communication in primary culture of cells derived from human aortic intima. Tissue Cell 1995;27:591-7 doi: doi.org/10.1016/S0040-8166(05)80069-2


Refbacks

  • There are currently no refbacks.
Copyright © 2019 Journal of Integrative Medicine


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.