Fine-tuning Mast Cells is Essential for the Maintenance and Regulation of the Systemic and Immune Homeostasis

Sylvia Frisancho-Kiss (Department of Anesthesiology and Intensive Care, Hospital Komárno, Slovakia)

Article ID: 4111

DOI: https://doi.org/10.30564/jim.v10i2.4111

Abstract


During the past decades, populous expansion in mast cell scientific literature came forth with more, than forty-four thousand PubMed publications available to date. Such surge is due to the appreciation of the momentous role of mast cells in the evolution of species, in the development and maintenance of vital physiological functions, such as reproduction, homeostasis, and fluids, diverse immunological roles, and the potential of far-reaching effects despite minute numbers. While the emerging knowledge of the importance of mast cells in equilibrium comes of age when looking at the matter from an evolutionary perspective, the recognition of mast cells beyond detrimental performance in allergies and asthma, during protection against parasites, falters. Beyond well known classical functions, mast cells can process and present antigens,can serve as a viral reservoir, can respond to hormones and xenobiotics,initiate antiviral and antibacterial responses, phagocytosis, apoptosis, and participate in important developmental cornerstones. During evolution,upon the development of a sophisticated niche of innate and adaptive cell populations, certain mast cell functions became partially transmutable,yet the potency of mast cells remained considerable. Reviewing mast cells enables us to reflect on the certitude, that our sophisticated, complex physiology is rooted deeply in evolution, which we carry ancient remnants of, ones that may have decisive roles in our functioning. This communication sets out the goal of characterizing mast cells, particularly the aspects less in limelight yet of immense significance, without the aspiration exhaust it all.

Keywords


Mast cells;Evolution;Degranulation;Protease;Endocrine disruptors;Environmental pollutants;Fibrosis;Allergy;Neuroinflammation

Full Text:

PDF

References


[1] Wong GW, Zhuo L, Kimata K, Lam BK, Satoh N, Stevens RL. The ancient origin of mast cells. Biochem Biophys Res Commun. 2014 Aug 22;451(2):314-8.DOI: https://doi.org/10.1016/j.bbrc.2014.07.124.

[2] Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol Res. 2006;34(2):97-115.DOI: https://doi.org/10.1385/IR:34:2:97.

[3] Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012 Oct;92(4):1619-49. DOI: https://doi.org/10.1152/physrev.00046.2011.

[4] Ray P, Krishnamoorthy N, Orissa TB, Ray A. Signaling of c-kit in dendritic cells influences adaptive immunity. Ann N Y Acad Sci. 2010 Jan;1183:104-22. DOI: https://doi.org/10.1111/j.1749-6632.2009.05122.x.

[5] Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol. 2015;126:45-127.

[6] DOI: https://doi.org/10.1016/bs.ai.2014.11.002.

[7] Valent P, Akin C, Nedoszytko B, Bonadonna P, Hartmann K, Niedoszytko M, Brockow K, Siebenhaar F, Triggiani M, Arock M, Romantowski J, Górska A, Schwartz LB, Metcalfe DD. Diagnosis, Classification and Management of Mast Cell Activation Syndromes (MCAS) in the Era of Personalized Medicine. Int J Mol Sci. 2020 Nov 27;21(23):9030. DOI: https://doi.org/10.1016/j.jaip.2019.01.006.

[8] Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, Cousin B. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells. 2010 Nov;28(11):2065-72. DOI: https://doi.org/10.1002/stem.523.

[9] Wang J, Shi GP. Mast cell stabilization: novel medication for obesity and diabetes. Diabetes Metab Res Rev. 2011 Nov;27(8):919-24. DOI: https://doi.org/10.1002/dmrr.1272.

[10] Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, Arock M, Guerre-Millo M, Clément K. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab. 2012 Sep;97(9):E1677-85. DOI: https://doi.org/10.1210/jc.2012-1532.

[11] Finlin BS, Zhu B, Confides AL, Westgate PM, Harfmann BD, Dupont-Versteegden EE, Kern PA. Mast Cells Promote Seasonal White Adipose Beiging in Humans. Diabetes. 2017 May;66(5):1237-1246.

[12] DOI: https://doi.org/10.2337/db16-1057.

[13] Lyons DO, Pullen NA. Beyond IgE: Alternative Mast Cell Activation Across Different Disease States. Int J Mol Sci. 2020 Feb 22;21(4):1498. DOI: https://doi.org/10.2337/db16-1057.

[14] Elieh Ali Komi D, Shafaghat F, Kovanen PT, Meri S. Mast cells and complement system: Ancient interactions between components of innate immunity. Allergy. 2020 Nov;75(11):2818-2828.

[15] DOI: https://doi.org/10.1111/all.14413.

[16] Yoshida K, Tajima M, Nagano T, Obayashi K, Ito M, Yamamoto K, Matsuoka I. Co-Stimulation of Purinergic P2X4 and Prostanoid EP3 Receptors Triggers Synergistic Degranulation in Murine Mast Cells. Int

[17] J Mol Sci. 2019 Oct 17;20(20):5157. DOI:https://doi.org/10.3390/ijms20205157.

[18] Blirando K, Milliat F, Martelly I, Sabourin JC, Benderitter M, François A. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am J Pathol. 2011 Feb;178(2):640-51. DOI:https://doi.org/10.1016/j.ajpath.2010.10.003.

[19] Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL, Cenac N, McNeil BD, Dong X, Hernandez JD, Sagi-Eisenberg R, Hammel I, Roers A, Valitutti S, Tsai M, Espinosa E, Galli SJ. Different activation

[20] signals induce distinct mast cell degranulation strategies. J Clin Invest. 2016 Oct 3;126(10):3981-3998. DOI: https://doi.org/10.1172/JCI85538.

[21] Wei JJ, Song CW, Sun LC, Yuan Y, Li D, Yan B, Liao SJ, Zhu JH, Wang Q, Zhang GM, Feng ZH. SCF and TLR4 ligand cooperate to augment the tumor-promoting potential of mast cells. Cancer Immunol Immunother. 2012 Mar;61(3):303-12. DOI:https://doi.org/10.1007/s00262-011-1098-z.

[22] Kim HS, Kawakami Y, Kasakura K, Kawakami T. Recent advances in mast cell activation and regulation. F1000Res. 2020 Mar19;9:F1000 Faculty Rev-196. DOI: https://doi.org/10.12688/f1000research.22037.1.

[23] Pejler G. Novel Insight into the in vivo Function of Mast Cell Chymase: Lessons from Knockouts and Inhibitors. J Innate Immun. 2020;12(5):357-372. DOI: https://doi.org/10.1159/000506985.

[24] Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Chida J, Le TQ, Yano M. Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses. J Mol Genet Med. 2008 Nov 29;3(1):167-75.

[25] Chen Y, Shiota M, Ohuchi M, Towatari T, Tashiro J, Murakami M, Yano M, Yang B, Kido H. Mast cell tryptase from pig lungs triggers infection by pneumotropic Sendai and influenza A viruses. Purification and characterization. Eur J Biochem. 2000 Jun;267(11):3189-97. DOI: https://doi.org/10.1046/j.1432-1327.2000.01346.x.

[26] Li J, Jubair S, Janicki JS. Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling. Hypertension. 2015 Feb;65(2):328-34. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.114.04238.

[27] Bagher M, Larsson-Callerfelt AK, Rosmark O, Hallgren O,Bjermer L, Westergren-Thorsson G. Mast cells and mast cell tryptase enhance migration of human lung fibroblasts through protease-activated receptor 2. Cell Commun Signal. 2018 Sep15;16(1):59.DOI: https://doi.org/10.1186/s12964-018-0269-3.

[28] Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, Deane A, Keely S, Horvat JC, Yang M, Oliver BG, van Rooijen N, Inman MD, Adachi R, Soberman RJ, Hamadi S, Wark PA, Foster PS, Hansbro PM. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013 Mar;131(3):752-62.

[29] DOI: https://doi.org/10.1016/j.jaci.2012.11.053.

[30] Rönnberg E, Calounova G, Guss B, Lundequist A, Pejler G. Granzyme D is a novel murine mast cell protease that is highly induced by multiple pathways of mast cell activation. Infect Immun. 2013 Jun;81(6):2085-94.DOI: https://doi.org/10.1128/IAI.00290-13.

[31] Martin RK, Saleem SJ, Folgosa L, Zellner HB, Damle SR, Nguyen GK, Ryan JJ, Bear HD, Irani AM, Conrad DH. Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol. 2014 Jul;96(1):151-9. DOI: https://doi.org/10.1189/jlb.5A1213-644R.

[32] Danelli L, Frossi B, Gri G, Mion F, Guarnotta C, Bongiovanni L, Tripodo C, Mariuzzi L, Marzinotto S, Rigoni A, Blank U, Colombo MP, Pucillo CE. Mast cells boost myeloid-derived suppressor cell activity and contribute to the development of tumor-favoring microenvironment. Cancer Immunol Res. 2015 Jan;3(1):85-95.DOI: https://doi.org/10.1158/2326-6066.CIR-14-0102.

[33] Lenz KM, Pickett LA, Wright CL, Davis KT, Joshi A, McCarthy MM. Mast Cells in the Developing Brain Determine Adult Sexual Behavior. J Neurosci. 2018 Sep 12;38(37):8044-8059.

[34] DOI: https://doi.org/10.1523/JNEUROSCI.1176-18.2018.

[35] Lenz KM, Pickett LA, Wright CL, Galan A, McCarthy MM. Prenatal Allergen Exposure Perturbs Sexual Differentiation and Programs Lifelong Changes in Adult Social and Sexual Behavior. Sci Rep. 2019

[36] Mar 18;9(1):4837. DOI: https://doi.org/10.1038/s41598-019-41258-2.

[37] Kristensen DM, Skalkam ML, Audouze K, Lesné L, Desdoits-Lethimonier C, Frederiksen H, Brunak S, Skakkebæk NE, Jégou B, Hansen JB, Junker S, Leffers H. Many putative endocrine disruptors inhibit prostaglandin synthesis. Environ Health Perspect. 2011 Apr;119(4):534-41. DOI: https://doi.org/10.1289/ehp.1002635.

[38] Nowak K, Jabłońska E, Ratajczak-Wrona W. Immunomodulatory effects of synthetic endocrine-disrupting chemicals on the development and functions of human immune cells. Environ Int. 2019 Apr;125:350-364. DOI: https://doi.org/10.1016/j.envint.2019.01.078.

[39] Grova N, Schroeder H, Olivier JL, Turner JD. Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants. Int J Genomics. 2019 Jan 14;2019:2085496. DOI: https://doi.org/10.1155/2019/2085496.

[40] Jablonowski ND, Schäffer A, Burauel P. Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ Sci Pollut Res Int. 2011 Feb;18(2):328-31. DOI: https://doi.org/10.1007/s11356-010-0431-y.

[41] Yuan B, Liang S, Jin YX, Zhang MJ, Zhang JB, Kim NH. Toxic effects of atrazine on porcine oocytes and possible mechanisms of action. PLoS One. 2017 Jun 22;12(6):e0179861.DOI: https://doi.org/10.1371/journal.pone.0179861.

[42] Harper AP, Finger BJ, Green MP. Chronic Atrazine Exposure Beginning Prenatally Impacts Liver Function and Sperm Concentration With Multi-Generational Consequences in Mice. Front Endocrinol (Lausanne). 2020 Nov 26;11:580124. DOI: https://doi.org/10.3389/fendo.2020.580124.

[43] Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol. 2018 Aug;48(7):555-574. DOI: https://doi.org/10.1080/10408444.2018.1493086.

[44] Suen JL, Hung CH, Yu HS, Huang SK. Alkylphenols--potential modulators of the allergic response. Kaohsiung J Med Sci. 2012 Jul;28(7 Suppl):S43-8. DOI: https://doi.org/10.1016/j.kjms.2012.05.009.

[45] Shinde R, McGaha TL. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol.2018 Dec;39(12):1005-1020. DOI: https://doi.org/10.1016/j.it.2018.10.010.

[46] Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014 Dec;14(12):801-14. DOI: https://doi.org/10.1038/nrc3846.

[47] Girer NG, Tomlinson CR, Elferink CJ. The Aryl Hydrocarbon Receptor in Energy Balance: The Road from Dioxin-Induced Wasting Syndrome to Combating Obesity with Ahr Ligands. Int J Mol Sci. 2020

[48] Dec 23;22(1):49. DOI: https://doi.org/10.3390/ijms22010049.

[49] Furue M, Hashimoto-Hachiya A, Tsuji G. Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci. 2019 Oct 31;20(21):5424. DOI: https://doi.org/10.3390/ijms20215424.

[50] Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002 Jun;110 Suppl 3(Suppl 3):451-88. DOI: https://doi.org/10.1289/ehp.110-1241197.

[51] Mariuzzi L, Domenis R, Orsaria M, Marzinotto S, Londero AP, Bulfoni M, Candotti V, Zanello A, Ballico M, Mimmi MC, Calcagno A, Marchesoni D, Di Loreto C, Beltrami AP, Cesselli D, Gri G. Functional expression of aryl hydrocarbon receptor on mast cells populating human endometriotic tissues. Lab Invest. 2016 Sep;96(9):959-971. DOI: https://doi.org/10.1038/labinvest.2016.74.

[52] Zhou Y, Tung HY, Tsai YM, Hsu SC, Chang HW, Kawasaki H, Tseng HC, Plunkett B, Gao P, Hung CH, Vonakis BM, Huang SK. Aryl hydrocarbon receptor controls murine mast cell homeostasis. Blood.

[53] Apr 18;121(16):3195-204.DOI: https://doi.org/10.1182/blood-2012-08-453597.

[54] Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci. 2020 Aug 11;21(16):5761.

[55] DOI: https://doi.org/10.3390/ijms21165761.

[56] Mackey E, Ayyadurai S, Pohl CS, D' Costa S, Li Y, Moeser AJ. Sexual dimorphism in the mast cell transcriptome and the pathophysiological responses to immunological and psychological stress. Biol Sex Differ. 2016 Nov 22;7:60.DOI: https://doi.org/10.1186/s13293-016-0113-7.

[57] Balseiro-Gomez S, Flores JA, Acosta J, RamirezPonce MP, Ales E. Identification of a New Exo-Endocytic Mechanism Triggered by Corticotropin-Releasing Hormone in Mast Cells. J Immunol. 2015

[58] Sep 1;195(5):2046-56. DOI:https://doi.org/10.4049/jimmunol.1500253.

[59] Yamanaka-Takaichi M, Mizukami Y, Sugawara K, Sunami K, Teranishi Y, Kira Y, Paus R, Tsuruta D. Stress and Nasal Allergy: Corticotropin-Releasing Hormone Stimulates Mast Cell Degranulation and Proliferation in Human Nasal Mucosa. Int J Mol Sci. 2021 Mar 9;22(5):2773.DOI: https://doi.org/10.3390/ijms22052773.

[60] Esposito P, Chandler N, Kandere K, Basu S, Jacobson S, Connolly R, Tutor D, Theoharides TC. Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther. 2002 Dec;303(3):1061-6.DOI: https://doi.org/10.1124/jpet.102.038497.

[61] Hagiwara SI, Hasdemir B, Heyman MB, Chang L, Bhargava A. Plasma Corticotropin-Releasing Factor Receptors and B7-2+

[62] Extracellular Vesicles in Blood Correlate with Irritable Bowel Syndrome Disease Severity. Cells. 2019 Jan 30;8(2):101. DOI: https://doi.org/10.3390/cells8020101.

[63] Overman EL, Rivier JE, Moeser AJ. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α. PLoS One. 2012;7(6):e39935.DOI: https://doi.org/10.1371/journal.pone.0039935.

[64] Huang M, Berry J, Kandere K, Lytinas M, Karalis K, Theoharides TC. Mast cell deficient W/W(v) mice lack stress-induced increase in serum IL-6 levels, as well as in peripheral CRH and vascular permeability, a model of rheumatoid arthritis. Int J Immunopathol Pharmacol. 2002 Sep-Dec;15(3):249-254. DOI: https://doi.org/10.1177/039463200201500314.

[65] Coutinho AE, Brown JK, Yang F, Brownstein DG, Gray M, Seckl JR, Savill JS, Chapman KE. Mast cells express 11β-hydroxysteroid dehydrogenase type 1: a role in restraining mast cell degranulation. PLoS One. 2013;8(1):e54640. DOI: https://doi.org/10.1371/journal.pone.0054640.

[66] Boyer HG, Wils J, Renouf S, Arabo A, Duparc C, Boutelet I, Lefebvre H, Louiset E. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice. Hypertension. 2017 Dec;70(6):1256-1263.

[67] DOI: https://doi.org/10.1161/HYPERTENSIONAHA.117.09746.

[68] Landucci E, Laurino A, Cinci L, Gencarelli M, Raimondi L. Thyroid Hormone, Thyroid Hormone Metabolites and Mast Cells: A Less Explored Issue. Front Cell Neurosci. 2019 Mar 29;13:79.

[69] DOI: https://doi.org/10.3389/fncel.2019.00079.

[70] Rocchi R, Kimura H, Tzou SC, Suzuki K, Rose NR, Pinchera A, Ladenson PW, Caturegli P. Tolllike receptor-MyD88 and Fc receptor pathways of mast cells mediate the thyroid dysfunctions observed

[71] during nonthyroidal illness. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):6019-24.DOI: https://doi.org/10.1073/pnas.0701319104.

[72] Özozan ÖV, Ertorul D. Is tri-iodothyronine a better choice than activated protein C in sepsis treatment? Ulus Travma Acil Cerrahi Derg. 2019 Nov;25(6):545-554.

[73] Sundstrom JB, Ellis JE, Hair GA, Kirshenbaum AS, Metcalfe DD, Yi H, Cardona AC, Lindsay MK, Ansari AA. Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood. 2007

[74] Jun 15;109(12):5293-300.DOI: https://doi.org/10.1182/blood-2006-11-058438.

[75] Patella V, Giuliano A, Bouvet JP, Marone G. Endogenous superallergen protein Fv induces IL-4 secretion from human Fc epsilon RI+ cells through interaction with the VH3 region of IgE. J Immunol. 1998 Nov 15;161(10):5647-55.

[76] Bramley AM, Vitalis TZ, Wiggs BR, Hegele RG. Effects of respiratory syncytial virus persistence on airway responsiveness and inflammation in guinea-pigs. Eur Respir J. 1999 Nov;14(5):1061-7.

[77] DOI: https://doi.org/10.1183/09031936.99.14510619.

[78] Hackler Y, Siebenhaar F, Löhning M, Maurer M, Muñoz M. Mast Cells Modulate Antigen-Specific CD8+ T Cell Activation During LCMV Infection. Front Immunol. 2021 Jun 14;12:688347. DOI: https://doi.org/10.3389/fimmu.2021.688347.

[79] Motta Junior JDS, Miggiolaro AFRDS, Nagashima S, de Paula CBV, Baena CP, Scharfstein J, de Noronha L. Mast Cells in Alveolar Septa of COVID-19 Patients: A Pathogenic Pathway That May Link Interstitial Edema to Immunothrombosis. Front Immunol. 2020 Sep 18;11:574862. DOI: https://doi.org/10.3389/fimmu.2020.574862.

[80] Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Romero-Ramírez S, Sosa-Hernández VA, Cervantes-Díaz R, Pérez-Fragoso A, Torres-Ruíz JJ, Gó-mez-Martín D, Campillo-Navarro M, Álvarez-Jiménez VD, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Maravillas-Montero JL, Chacón-Salinas R. Severe COVID-19 is marked by dysregulated serum levels of carboxypeptidase A3 and serotonin. J Leukoc Biol. 2021 Sep;110(3):425-431. DOI: https://doi.org/10.1002/JLB.4HI0221-087R.

[81] Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2017 Aug;140(2):335-348. DOI: https://doi.org/10.1016/j.jaci.2017.06.003.

[82] HJ Gould, P Takhar, HE Harries, E Chevretton, BJ Sutton: The allergic march from Staphylococcus aureus superantigen to Immunoglobulin E. Chem. Immunol. Allergy. Basel, Karger,2007,vol93:106-136.DOI:https://doi.org/10.1159/000100861.

[83] Mazzoni A, Siraganian RP, Leifer CA, Segal DM. Dendritic cell modulation by mast cells controls the Th1/Th2 balance in responding T cells. J Immunol. 2006 Sep 15;177(6):3577-81. DOI: https://doi.org/10.4049/jimmunol.177.6.3577.

[84] McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015 Mar 12;519(7542):237-41.DOI: https://doi.org/10.1038/nature14022.

[85] Kumar M, Duraisamy K, Chow BK. Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2). Cells. 2021 Apr 27;10(5):1033. DOI: https://doi.org/10.3390/cells10051033.

[86] Krysko O, Teufelberger A, Van Nevel S, Krysko DV, Bachert C. Protease/antiprotease network in allergy: The role of Staphylococcus aureus protease-like proteins. Allergy. 2019 Nov;74(11):2077-2086.

[87] DOI: https://doi.org/10.1111/all.13783.

[88] Reithofer M, Jahn-Schmid B. Allergens with Protease Activity from House Dust Mites. Int J Mol Sci. 2017 Jun 27;18(7):1368. DOI: https://doi.org/10.3390/ijms18071368.

[89] Jin Y, Zhu M, Guo Y, Foreman D, Feng F, Duan G, Wu W, Zhang W. Fine particulate matter (PM2.5) enhances FcεRI-mediated signaling and mast cell function. Cell Signal. 2019 May;57:102-109.

[90] DOI: https://doi.org/10.1016/j.cellsig.2019.01.010.

[91] Wei CC, Hase N, Inoue Y, Bradley EW, Yahiro E, Li M, Naqvi N, Powell PC, Shi K, Takahashi Y, Saku K, Urata H, Dell'italia LJ, Husain A. Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest. 2010 Apr;120(4):1229-39. DOI: https://doi.org/10.1172/JCI39345.

[92] Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJ, Njoku DB, Rose NR. Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am J Pathol. 2004 Dec;165(6):1883-94. DOI: https://doi.org/10.1016/s0002-9440(10)63241-5.

[93] Sydykov A, Luitel H, Mamazhakypov A, Wygrecka M, Pradhan K, Pak O, Petrovic A, Kojonazarov B, Weissmann N, Seeger W, Grimminger F, Ghofrani HA, Kosanovic D, Schermuly RT. Genetic Deficiency and Pharmacological Stabilization of Mast Cells Ameliorate Pressure Overload-Induced Maladaptive Right Ventricular Remodeling in Mice. Int J Mol Sci. 2020 Nov 30;21(23):9099.DOI: https://doi.org/10.3390/ijms21239099.

[94] Vedernikov YP. Mechanisms of coronary spasm of isolated human epicardial coronary segments excised 3 to 5 hours after sudden death. J Am Coll Cardiol. 1986 Jul;8(1 Suppl A):42A-49A.

[95] DOI: https://doi.org/10.1016/s0735-1097(86)80027-4.

[96] Lagraauw HM, Wezel A, van der Velden D, Kuiper J, Bot I. Stress-induced mast cell activation contributes to atherosclerotic plaque destabilization. Sci Rep. 2019 Feb 14;9(1):2134.

[97] DOI: https://doi.org/10.1038/s41598-019-38679-4.

[98] Kounis NG, Koniari I, Velissaris D, Tzanis G, Hahalis G. Kounis Syndrome—not a Single-organ Arterial Disorder but a Multisystem and Multidisciplinary Disease. Balkan Med J. 2019 Jul 11;36(4):212-221. DOI: https://doi.org/10.4274/balkanmedj.galenos.2019.2019.5.62.

[99] Wezel A, de Vries MR, Lagraauw HM, Foks AC, Kuiper J, Quax PH, Bot I. Complement factor C5a induces atherosclerotic plaque disruptions. J Cell Mol Med. 2014 Oct;18(10):2020-30. DOI: https://doi.org/10.1111/jcmm.12357.

[100] Frisancho-Kiss S, Davis SE, Nyland JF, Frisancho JA, Cihakova D, Barrett MA, Rose NR, Fairweather D. Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in

[101] inflammatory heart disease. J Immunol. 2007 Jun 1;178(11):6710-4.

[102] DOI: https://doi.org/10.4049/jimmunol.178.11.6710.

[103] Yip KH, Kolesnikoff N, Yu C, Hauschild N, Taing H, Biggs L, Goltzman D, Gregory PA, Anderson PH, Samuel MS, Galli SJ, Lopez AF, Grimbaldeston MA. Mechanisms of vitamin D3 metabolite repression of IgE-dependent mast cell activation. J Allergy Clin

[104] Immunol. 2014 May;133(5):1356-64.DOI: https://doi.org/10.1016/j.jaci.2013.11.030.

[105] Schwarzer G, Bassler D, Mitra A, Ducharme FM, Forster J. Ketotifen alone or as additional medication for long-term control of asthma and wheeze in children. Cochrane Database Syst Rev.

[106] ;2004(1):CD001384. DOI: https://doi.org/10.1002/14651858.CD001384.pub2.

[107] Wise SK et al.: International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol. 2018 Feb;8(2):108-352. DOI: https://doi.org/10.1002/alr.22073.

[108] Caslin HL, Kiwanuka KN, Haque TT, Taruselli MT, MacKnight HP, Paranjape A, Ryan JJ. Controlling Mast Cell Activation and Homeostasis: Work Influenced by Bill Paul That Continues Today.Front Immunol. 2018 Apr 26;9:868. DOI: https://doi.org/10.3389/fimmu.2018.00868.

[109] Garretti F, Agalliu D, Lindestam Arlehamn CS, Sette A, Sulzer D. Autoimmunity in Parkinson's Disease: The Role of α-Synuclein-Specific T Cells. Front Immunol. 2019 Feb 25;10:303. DOI: https://doi.org/10.3389/fimmu.2019.00303.

[110] Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 2011 Jun;119(6):866-72. DOI: https://doi.org/10.1289/ehp.1002839.

[111] Kempuraj D, Selvakumar GP, Zaheer S, Thangavel R, Ahmed ME, Raikwar S, Govindarajan R, Iyer S, Zaheer A. Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson's Disease. J Neuroimmune Pharmacol. 2018 Mar;13(1):100-112. DOI: https://doi.org/10.1007/s11481-017-9766-1.

[112] Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, Cron RQ, Shacka JJ, Raman C, Standaert DG. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and

[113] dopaminergic neurodegeneration. J Neurosci. 2013 Jun 5;33(23):9592-600.DOI: https://doi.org/10.1523/JNEUROSCI.5610-12.2013.

[114] Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML. Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab. 2010 Apr;30(4):689-702. DOI: https://doi.org/10.1038/jcbfm.2009.282.

[115] Nakamura T, Murata T. Regulation of vascular permeability in anaphylaxis. Br J Pharmacol. 2018 Jul;175(13):2538-2542. DOI: https://doi.org/10.1111/bph.14332.

[116] McKittrick CM, Lawrence CE, Carswell HV. Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab. 2015

[117] Mar 31;35(4):638-47. DOI: https://doi.org/10.1038/jcbfm.2014.239.

[118]

[119] Zhang X, Dong H, Wang F, Zhang J. Mast Cell Deficiency Protects Mice from Surgery-Induced Neuroinflammation. Mediators Inflamm. 2020 Aug 1;2020:1921826.DOI: https://doi.org/10.1155/2020/1921826.

[120] Frisancho-Kiss S.: Innate recognition and signaling during times of pandemic and beyond from intensive care perspective. Journal of Advances in Medicine and Medical research.2021, Volume 33/12/63.


Refbacks

  • There are currently no refbacks.
Copyright © 2021 Sylvia Frisancho


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.