Photodynamic Therapy in the Treatment of Cancer: A review

Hena Khanam (Department of Chemistry, Aligarh Muslim University, Aligarh 202002 UP India)
Ayaz Mahmood Dar (Department of Chemistry, Aligarh Muslim University, Aligarh 202002 UP India;Department of Chemistry, Govt Degree College, Kulgam (University of Kashmir) JK India)
Bashir Ahmad Dar (Department of Chemistry, Govt Degree College, Sopore (University of Kashmir) JK India)
Shamsuzzaman Mondle (Department of Chemistry, Aligarh Muslim University, Aligarh 202002 UP India)

Article ID: 780



The search for non-invasive or minimally invasive approaches for the treatment of cancer has led to the development of different therapeutic regimes and one such regime is photodynamic therapy (PDT). PDT is a non-thermal treatment based on the synergy of three elements: the administration of a photosensitizer drug; light at a precise wavelength; and the presence of oxygen. When these three components are combined, they lead to the formation of reactive oxygen species (ROS), resulting in a complex cascade of events and subsequent cell death Studies revealed that PDT can prolong survival in patients with inoperable cancers and significantly improve the quality of life. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream strategy for cancer treatment. In this review, we have addressed the most important biological and physicochemical aspects of PDT, summarized its clinical status and provided an outlook for its potential future development. We also discussed the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.


PDT; Anticancer; Photosensitizer; Reactive oxygen; X-ray; Nanotechnology

Full Text:



[1] "Cancer Fact sheet N°297". WHO. February 2014. Retrieved 10 June 2014

[2] "Defining Cancer". National Cancer Institute. Retrieved 10 June 2014.

[3] "Cancer -Signs and symptoms". NHS Choices. Retrieved 10 June 2014.

[4] "How is cancer diagnosed?". ACS. 2013-01-29. Retrieved 10 June 2014.

[5] Ferrari, M. Nat. Rev. Cancer 2005, 5, 161.

[6] Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nat.

[7] Nanotechnol. 2007, 2, 751.

[8] Bergh, J. Quo vadis with targeted drugs in the 21st century? J. Clin. Oncol. 2009, 27, 2-5.

[9] Fojo, T.; Grady, C. How much is life worth: cetuximab, non-small cell lung cancer, and

[10] the $440 billion question, J. Natl. Cancer Inst. 2009, 101, 1044-1048.

[11] Hampton, T. Targeted cancer therapies lagging: better trial design could boost success

[12] rate. JAMA. 2006, 296, 1951-1952.

[13] Dougherty, T. ; Grindey, G. B.; Fiel, R.; Weishaupt, K. R.; Boyle, D. G. J. Natl. Cancer

[14] Inst. 1975, 55, 115.

[15] (a) Oleinick, N. L.; Morris, R. L.; Belichenko, I. Photochem. Photobiol. Sci. 2002, 1, 1.

[16] (b) Sharman, W.M.; Allen, C. M.; van Lier, J. E. Methods Enzymol. 2000, 319, 376.

[17] (c) Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy,

[18] Chem. Rev. 2015, 115, 1990−2042

[19] van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, Robinson, S.D.J. Oncologic

[20] Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,

[21] Cancers 2017, 9, 19.

[22] Coleman, M.P.; Quaresma, M.; Berrino, F.; Lutz, J-M.; De Angelis, R.R.; Capocaccia,

[23] R.R. Cancer survival in five continents: a worldwide population-based study

[24] (CONCORD). Lancet Oncol, 2008, 9, 730-56.

[25] Agostinis, P.; Berg, K.; Cengel, K.A.; Foster T.H. et al. Photodynamic Therapy of

[26] Cancer: An Update, CA Cancer J Clin. 2011, 61, 250-281.

[27] Dougherty,T.; Kaufman, J.; Goldfarb, A.; Weishaupt, K.; Boyle, D.; Mittleman, A.

[28] Photoradiation therapy for the treatment of malignant tumors, Cancer Res. 1978,

[29] -2635.

[30] Kato, H.; Horai, T.; Furuse, K.; Fukuoka, M.; Suzuki, S.; Hiki, Y.; Ito, Y.; Mimura, S.;

[31] Tenjin, Y.; Hisazumi, H.; et al., Photodynamic therapy for cancers: a clinical trial of

[32] porfimer sodium in Japan, Jpn. J. Cancer Res. 1993, 84,1209–1214.

[33] Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn,

[34] S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.;

[35] Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J.; Photodynamic therapy of cancer:

[36] an update, CA Cancer J. Clin. 2011, 61, 250–281.

[37] L.A.; Torre, Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality

[38] rates and trends-an update, Cancer Epidemiol. Biomarkers Prev. 2016, 25, 16–27.

[39] De Santis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast Cancer statistics 2013, CA Cancer J.

[40] Clin. 2014, 64, 52-62.

[41] Veronesi, U.; Boyle, P.; Goldhirsch, A.; Orecchia, R.; Viale. G. Breast Cancer, Lancet

[42] , 365, 1727-41.

[43] Data were provided by the Office for National Statistics on request, March 2013.


[45] Shishkova, N.; Kuznetsova, O.; Berezov, T. Photodynamic therapy for gynecological

[46] diseases and breast Cancer, Cancer Biol Med. 2012, 9, 2095-3941.

[47] Taber, S.W.; Fingar, V.H.; Coots, C.T.; Weiman, T.J. Photodynamic therapy using

[48] mono-L-aspartyl chlorine6 (Npe6) for the treatment of cutaneous disease: a phase I

[49] clinical study, Clin. Cancer Res. 1998, 4, 2741-6.

[50] Khan, S.A.; Dougherty, T.J.; Mang, T.S. An evaluation of photodynamic therapy in the

[51] management of cutaneous metastases of breast cancer, Eur. J. Cancer, 1993, 29A,

[52] -90.

[53] Duhem, N.; Danhier, F.; Préat, V. Vitamin E-based nanomedicines for anti-cancer drug

[54] delivery, J. Contr. Release 2014, 182, 33–44.

[55] Duhem, N.; Danhier, F.; Pourcelle, V.; Schumers, J.-M.; Bertrand, O.; LeDuff, C.S.;

[56] Hoeppener, S. Schubert, U.S.; Gohy, J.-F.; Marchand-Brynaert, J.; Préat, V. Self

[57] assembling doxorubicin–tocopherol succinate prodrug as a new drug delivery system:

[58] synthesis, characterization, and in vitro and in vivo Anticancer Activity, Bioconjugate

[59] Chem. 2014, 25, 72-81.

[60] Danhier, F.; Kouhé, T.T.B.; Duhem, N.; Ucakar, B.; Staub, A.; Draoui, N.; Feron, O.;

[61] Préat, V. Vitamin E-based micelles enhance the anticancer activity of doxorubicin, Int. J.

[62] Pharm. 2014, 476, 9-15.

[63] Pais-Silva, C.; de Melo-Diogo, D.; Correia, I.J. IR780-loaded TPGS-TOS micelles for

[64] breast cancer photodynamic therapy, Eur. J. Pharm. Biopharm. 2017, 113, 108-117.

[65] Wyss, P.; Schwarz, V.; Dobler-Girdziunaite, D.; Homung, R.; Walt, H.; Degen, A. et al.

[66] Photodynamic therapy of locoregional breast cancer recurrences using a chlorine type

[67] photosensitizer, Int J Cancer, 2001, 93, 720-4.

[68] Cuenca, R.E.; Allison, R.R.; Sibata, C.; Downie, G.H. Breast cancer with chest wall

[69] progression: treatment with photodynamic therapy. Ann Surg Oncol 2004, 11, 322-7.

[70] Li, X.; Ferrel, G.I.; Guerra, M.C.; Hode, T.; Lunn, J.; Adalsteinsson, O. et al.

[71] Preliminary safety and efficacy results of laser immunotherapy for the treatment of

[72] metastatic breast cancer patients, Photochem. Photobiol. Sci. 2011, 10, 817-21.

[73] Gollnick, S.O.; Vaughan, L.; Henderson, B.W. Generation of effective anti-tumor

[74] vaccines using photodynamic therapy, Cancer Res. 2002, 62, 1604-8.

[75] Globocan, 2012, Estimated Cancer Incidence, Mortality and PrevalenceWorldwide in

[76] Information and online prediction. WHO InternationalAgency for Research of

[77] Cancer. (accessed 10.04.15).

[78] Siegel, R.; De Santis, C.; Jemal, A. Colorectal cancer statistics, 2014, CA Cancer J. Clin.

[79] , 64, 104–117.

[80] Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.;

[81] Comber, H. et al., Cancer incidence and mortality patterns in Europe: Estimatesfor 40

[82] countries in 2012, Eur. J. Cancer 2013, 49, 1374–1403.

[83] Edwards, M.S.; Chadda, S.D.; Zhao, Z.; Barber, B.L.; Sykes, D.P. A systematic review

[84] of treatment guidelines for metastatic colorectal cancer, Colorectal Dis. 2011, 14, 31-47.

[85] McQuade, R.M.; Bornstein, J.C.; Nurgali, K. Anti-colorectal cancer chemotherapy-

[86] induced diarrhoea: current treatments and side-effects, Int J. Clin. Med. 2014, 5, 393-406

[87] Allen, W.L.; Stevenson, L.; Coyle, V.M.; Jithesh, P.V.; Proutski, I.; Carson, G. et al.,

[88] A systems biology approach identifies SART1 as a novel determinant of both 5-FU and

[89] SN38 drug resistance in colorectal cancer. Mol. Cancer Ther. 2012, 11, 119-131.

[90] Thaler, J.; Karthaus, M.; Mineur, L.; Greil, R.; Letocha, H.; Hofheinz, R. et al.

[91] Skin toxicity and quality of life in patients with metastatic colorectal cancerduring first-

[92] line panitumumab plus FOLFIRI treatment in a single arm phaseII study, BMC Cancer

[93] , 12, 438-448.

[94] Regula, J.; MacRobert, A.J.; Gorchein, A.; Buonaccorsi, G.A.; Thorpe, S.M.; Spencer,

[95] G.M. et al., Photosensitisation and photodynamic therapy of oesophageal, duodenal and

[96] colorectal tumours using 5 aminolaevulinic acidinduced protoporphyrin IX: a pilot study,

[97] Gut 1995, 36, 67-75.

[98] Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O. et al.,

[99] Photodynamic therapy of cancer: an update, CA Cancer J. Clin. 2011, 61, 250-281.

[100] Bugaj, A.M. Targeted photodynamic therapy-a promising modality of cancer treatment,

[101] Photochem. Photobiol. Sci. 2011, 10, 1097-1109.

[102] Kiesslich, T.; Krammer, B.; Plaetzer, K. Cellular mechanisms and prospective

[103] applications of hypericin in photodynamic therapy, Curr. Med. Chem. 2006, 13,

[104] -2204.

[105] Vignais, P.M.; Vignais, P. Discovering Life, Manufacturing Life: How the Experimental

[106] Method Shaped Life Sciences, Springer, Berlin, 2010, pp.219–225

[107] Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin,

[108] D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources,

[109] methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, 359-386.

[110] Paul, S.; Altorki, N. Outcomes in the management of esophageal cancer. J. Surg. Oncol.

[111] , 110, 599-610.

[112] Sjoquist, K.M.; Burmeister, B.H.; Smithers, B.M.; Zalcberg, J.R.; Simes, R.J.; Barbour,

[113] A.; Gebski, V.; Australasian Gastro-Intestinal Trials, G. Survival after neoadjuvant

[114] chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: An updated

[115] meta-analysis. Lancet Oncol. 2011, 12, 681-692.

[116] Ronellenfitsch, U.; Schwarzbach, M.; Hofheinz, R.; Kienle, P.; Kieser, M.; Slanger,

[117] T.E.; Jensen, K.; GE Adenocarcinoma meta analysis Group. Perioperative

[118] chemo(radio)therapy versus primary surgery for resectable adenocarcinoma of the

[119] stomach, gastroesophageal junction, and lower esophagus. Cochrane Database Syst. Rev.


[121] Keeley, S.B.; Pennathur, A.; Gooding,W.; Landreneau, R.J.; Christie, N.A.; Luketich, J.

[122] Photodynamic therapy with curative intent for barrett’s esophagus with high grade

[123] dysplasia and superficial esophageal cancer. Ann. Surg. Oncol. 2007, 14, 2406-2410.

[124] Yachimski, P.; Puricelli, W.P.; Nishioka, N.S. Patient predictors of histopathologic

[125] response after photodynamic therapy of barrett’s esophagus with high-grade dysplasia or

[126] intramucosal carcinoma. Gastrointest. Endosc. 2009, 69, 205-212.

[127] Gill, K.R.; Wolfsen, H.C.; Preyer, N.W.; Scott, M.V.; Gross, S.A.; Wallace, M.B.;

[128] Jones, L.R. Pilot study on light dosimetry variables for photodynamic therapy of barrett’s

[129] oesophagus with high-grade dysplasia. Clin. Cancer Res. 2009, 15, 1830-1836.

[130] Yoon, H.Y.; Cheon, Y.K.; Choi, H.J.; Shim, C.S. Role of photodynamic therapy in the

[131] palliation of obstructing esophageal cancer. Korean J. Intern. Med. 2012, 27, 278-284.

[132] Mackenzie, G.D.; Dunn, J.M.; Selvasekar, C.R.; Mosse, C.A.; Thorpe, S.M.; Novelli,

[133] M.R.; Bown, S.G.; Lovat, L.B. Optimal conditions for successful ablation of high-grade

[134] dysplasia in barrett’s oesophagus using aminolaevulinic acid photodynamic therapy.

[135] Lasers Med. Sci. 2009, 24, 729-734

[136] Berr, F.; Wiedmann, M.; Tannapfel, A.; Halm, U.; Kohlhaw, K.; Schmidt, F.; Wittekind,

[137] C.; Hauss, J.; Mössner, J. Photodynamic therapy for advanced bile duct cancer: evidence

[138] for improved palliation and extended survival. Hepatology, 2000, 31, 291-298

[139] Dumoulin, F.; Gerhardt, T.; Fuchs, S.; Scheurlen, C.; Neubrand, M.; Layer, G.;

[140] Sauerbruch, T. Phase II. Study of photodynamic therapy and metal stent aspalliative

[141] treatment for non resectable hilar cholangiocarcinoma. Gastrointest. Endosc., 2003, 57,

[142] -867

[143] Kato, H.; Furukawa, K.; Sato, M.; Okunaka, T.; Kusunoki, Y.; Kawahara, M.; Fukuoka,

[144] M.; Miyazawa, T.; Yana, T.; Matsui, K.; Shiraishi I.I. T: Phase, clinical study of

[145] photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laserfor early

[146] superficial squamous cell carcinoma of the lung. Lung Cancer, 2003, 42, 103-111.

[147] Jerjes, W.; Upile, T.; Akram, S.; Hopper, C. The surgical palliation of advanced head

[148] and neck cancer using photodynamic therapy. Clin Oncol (R Coll Radiol), 2010, 22,

[149] -791.

[150] M.A. Biel, Photodynamic therapy and the treatment of head and neck neoplasia.

[151] Laryngoscope. 1998, 108, 1259-1268.

[152] M.A. Biel, Advances in photodynamic therapy for the treatment of head and neck

[153] cancers. Lasers Surg. Med. 2006, 38, 349-355

[154] G.S.; Keller, Doiron, D.R.; Fisher, G.U. Photodynamic therapy in otolaryngology-head

[155] and neck surgery. Arch Otolaryngol. 1985, 111, 758-761.

[156] Feyh, J.; Goetz, A.; Muller, W.; Konigsberger, R.; Kastenbauer, E. Photodynamic

[157] therapy in head and neck surgery. J. Photochem. Photobiol. B. 1990, 7, 353-358.

[158] Feyh, J.; Gutmann, A.; Leunig, A. A photodynamic therapy in head and neck surgery.

[159] Laryngol Rhinol. Otol. 1993, 72, 273-278.

[160] Mimikos, C.; Shafirstein, G.; Arshad, H. Current state and future of photodynamic

[161] therapy for the treatment of head and neck squamous cell carcinoma. World Journal of

[162] Otorhinolaryngology-Head and Neck Surgery, XX, 2016, 1-4

[163] Hopper, C.; Kubler, A.; Lewis, H.; Tan, I.B.; Putnam, G. mTHPC-mediated

[164] photodynamic therapy for early oral squamous cell carcinoma. Int. J. Cancer. 2004, 111,

[165] -146.

[166] Fan, K.F.; Hopper, C.; Speight, P.M.; Buonaccorsi, G.; MacRobert, A.J.; Bown, S.G.

[167] Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant

[168] lesions of the oral cavity. Cancer 1996, 78, 1374-1383.

[169] Copper, M.P.; Triesscheijn, M.; Tan, I.B.; Ruevekamp, M.C.; Stewart, F.A.

[170] Photodynamic therapy in the treatment of multiple primary tumours in the head and

[171] neck, located to the oral cavity and oropharynx. Clin Otolaryngol, 2007, 32, 185-189.

[172] D’Cruz, A.K.; Robinson, M.H.; Biel, M.A. mTHPC-mediated photodynamic therapy in

[173] patients with advanced, incurable head and neck cancer: a multicenter study of 128

[174] patients. Head Neck 2004, 26, 232-240.

[175] Grant, W.E.; Hopper, C.; MacRobert, A.J.; Speight, P.M.; Bown, S.G. Photodynamic

[176] therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. Lancet.

[177] , 1993, 147-148.

[178] Sieron, A.; Namyslowski, G.; Misiolek, M.; Adamek, M.; Kawczyk-Krupka, A.

[179] Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and

[180] hypopharyngeal cancers. Eur. Arch. Otorhinolaryngol. 2001, 258, 349-352.

[181] Nathan, T.R.; Whitelaw, D.E.; Chang, S.C. et al. Photodynamic therapy for prostate

[182] cancer recurrence after radiotherapy: a phase I study. J. Urol. 2002, 168, 1427-1432.

[183] Du, K.L.; Mick, R.; Busch, T.M. et al. Preliminary results of interstitial motexafin

[184] lutetium-mediated PDT for prostate cancer. Lasers Surg. Med., 2006, 38, 427-434

[185] Patel, H.; Mick, R.; Finlay, J. et al. Motexafin lutetium-photodynamic therapy of

[186] prostate cancer: short- and long-term effects on prostate-specific antigen. Clin Cancer

[187] Res. 2008, 14, 4869-4876.

[188] Weersink, R.A.; Forbes, J.; Bisland, S. et al. Assessment of cutaneous photosensitivity

[189] of TOOKAD (WST09) in preclinical animal models and in patients. Photochem.

[190] Photobiol. 2005, 81, 106-113.

[191] Trachtenberg, J.; Bogaards, A. Weersink, R.A. et al. Vascular targeted photodynamic

[192] therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate

[193] cancer following definitive radiation therapy: assessment of safety and treatment

[194] response. J Urol. 2007, 178, 1974-1979

[195] Trachtenberg, J.; Weersink, R.A.; Davidson, S.R. et al. Vascular-targeted photodynamic

[196] therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external

[197] beam radiotherapy: a study of escalating light doses. BJU Int. 2008, 102, 556-562.

[198] Prout Jr, G.R.; C.W.; Lin, Benson Jr, R. et al. Photodynamic therapy with

[199] hematoporphyrin derivative in the treatment of superficial transitional-cell carcinoma of

[200] the Bladder. N Engl J Med., 1987, 317, 1251-1255.

[201] Uchibayashi, T.; Koshida, K.; Kunimi, K.; Hisazumi, H. Whole bladder wall

[202] photodynamic therapy for refractory carcinoma in situ of the bladder. Br. J. Cancer.,

[203] , 71, 625-628.

[204] D’Hallewin, M.A.; Baert, L. Long-term results of whole bladder wall photodynamic

[205] therapy for carcinoma in situ of the bladder. Urology, 1995, 45, 763-767.

[206] Nseyo, U.O.; Shumaker, B.; Klein, E.A.; Sutherland, K. Photodynamic therapy using

[207] porfimer sodium as an alternative to cystectomy in patients with refractory transitional

[208] cell carcinoma in situ of the bladder, Bladder Photofrin Study Group. J Urol., 1998,

[209] , 39-44.

[210] Berger, A.P.; Steiner, H.; Stenzl, A.; Akkad, T.; Bartsch, G.; Holtl, L. Photodynamic

[211] therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent

[212] superficial bladder cancer: a single-center study. Urology., 2003, 61, 338-341.

[213] Waidelich, R.; Beyer, W.; Knuchel, R. et al. Whole bladder photodynamic therapy with

[214] -aminolevulinic acid using a white light source, Urology. 61(2003) 332-337.

[215] Jocham, D.; von Wietersheim, Pfluger, J.H. et al. BCG versus photodynamic therapy

[216] (PDT) for nonmuscle invasive bladder cancer-a multicentre clinical phase III study

[217] [in German]. Aktuelle Urol., 2009, 40, 91-99.

[218] Pinthus, J.H.; Bogaards, A.; Weersink, R.; Wilson, B.C. Trachtenberg J. Photodynamic

[219] therapy for urological malignancies: past to current approaches. J Urol. 2006, 175,

[220] -1207.

[221] Skyrme, R.J.; French, A.J.; Datta, S.N.; Allman, R.; Mason, M.D.; Matthews, P.N. A

[222] phase-1study of sequential mitomycin C and 5- aminolaevulinic acid-mediated

[223] photodynamic therapy in recurrent superficial bladder carcinoma. BJU Int. 2005, 95,

[224] -1210.

[225] Hayata, Y.; Kato, H.; Konaka, C.; Ono, J.; Takizawa, N. Hematoporphyrin derivative

[226] and laser photoradiation in the treatment of lung cancer. Chest., 1982, 81, 269-277.

[227] LoCicero 3rd J.; Metzdorff, M.; Almgren, C. Photodynamic therapy in the palliation of

[228] late stage obstructing non-small cell lung cancer. Chest. 1990, 98, 97-100.

[229] McCaughan, J.S. Jr; Williams, T.E. Photodynamic therapy for endobronchial malignant

[230] disease: a prospective fourteen-year study. J. Thorac. Cardiovasc Surg., 1997, 114,

[231] -946

[232] Diaz-Jimenez, J.P.; Martinez-Ballarin, J.E.; Llunell, A.; Farrero, E.; Rodriguez, A.;

[233] Castro, M.J. Efficacy and safety of photodynamic therapy versus Nd-YAG laser

[234] resection in NSCLC with airway obstruction. Eur. Respir J. 1999, 14, 800-805.

[235] S.; Lam, Muller, N.L.; Miller, R.R. et al. Laser treatment of obstructive endobronchial

[236] tumors: factors which determine response. Lasers Surg. Med. 1987, 7, 29-35.

[237] Furuse, K.; Fukuoka, M.; Kato, H. et al. A prospective phase II study on photodynamic

[238] therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung

[239] Cancer Photodynamic Therapy Study Group. J. Clin. Oncol. 1993, 11, 1852-1857.

[240] Corti, L.; Toniolo, L.; Boso, C. et al. Longterm survival of patients treated with

[241] photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma.

[242] Lasers Surg. Med. 2007, 39, 394-402

[243] Usuda, J.; Ichinose, S.; Ishizumi, T. et al. Outcome of photodynamic therapy using NPe6

[244] for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res.

[245] , 16, 2198-2204.

[246] Minnich, D.J.; Bryant, A.S.; Dooley, A.; Cerfolio, R.J. Photodynamic laser therapy for

[247] lesions in the airway. Ann. Thorac. Surg., 2010, 89, 1744-1748

[248] Moskal, T.L.; Dougherty, T.J.; Urschel, J.D. et al. Operation and photodynamic therapy

[249] for pleural mesothelioma: 6-year follow- up. Ann. Thorac. Surg. 1998, 66, 1128-1133.

[250] Friedberg, J.S.; Cengel, K.A. Pleural malignancies. Semin. Radiat. Oncol. 2010, 20,

[251] -214.

[252] Kostron, H. Photodynamic diagnosis and therapy and the brain. Methods Mol. Biol.,

[253] , 635, 261-280.

[254] Perria, C.; Capuzzo, T.; Cavagnaro, G. et al. Fast attempts at the photodynamic

[255] treatment of human gliomas. J. Neurosurg. Sci., 1980, 24, 119-129.

[256] Kaye, A.H.; Morstyn, Brownbill, G.D. Adjuvant high-dose photoradiation therapy in the

[257] treatment of cerebral glioma: a phase 1-2 study. J. Neurosurg., 1987, 67, 500-505.

[258] Muller, P.J.; Wilson, B.C. Photodynamic therapy for recurrent supratentorial gliomas.

[259] Semin. Surg. Oncol., 1995, 11, 346-354.

[260] Krishnamurthy, S.; Powers, S.K.; Witmer, P.; Brown, T. Optimal light dose for

[261] interstitial photodynamic therapy in treatment for malignant brain tumors.

[262] Lasers Surg. Med., 2000, 224-234.

[263] Kostron, H.; Fritsch, E.; Grunert, V. Photodynamic therapy of malignant brain tumours:

[264] a phase I/II trial. Br. J. Neurosurg. 1988, 2, 241-248.

[265] Marks, P.V.; Belchetz, P.E.; Saxena, A. et al. Effect of photodynamic therapy on

[266] recurrent pituitary adenomas: clinical phase I/II trial-an early report. Br. J. Neurosurg.

[267] , 14, 317-325.

[268] Eljamel, S. Photodynamic assisted surgical resection and treatment of malignant brain

[269] tumors; technique, technology and clinical application. Photodiag. Photodyn. Ther.

[270] , 1, 93-98.

[271] Muller, P.; Wilson, B. Photodynamic therapy of brain tumours-post-operative ‘‘field

[272] fractionation.’’ J. Photochem. Photobiol. B. 1991, 9, 117-119.

[273] Stummer, W.; Novotny, A.; Stepp, H.; Goetz, C.; Bise, K.; Reulen, H.J. Fluorescence-

[274] guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced

[275] porphyrins: a prospective study in 52 consecutive patients. J. Neurosurg., 2000,

[276] , 1003-1013.

[277] Stylli, S.S.; A.H.; Kaye, MacGregor, L.; Howes, M.; Rajendra, P. Photodynamic

[278] therapy of high grade glioma-long term survival. J. Clin. Neurosci., 2005, 12, 389-398.

[279] Muller, P.J.; Wilson, B.C. Photodynamic therapy of brain tumors-a work in progress.

[280] Lasers Surg Med., 2006, 38, 384-389

[281] Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J.

[282] Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant

[283] glioma: a randomised controlled multicentre phase III trial. Lancet Oncol., 2006, 7,

[284] -401

[285] Jacques, S.L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol.,

[286] , 58, 37-61.

[287] Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K. The Role of Porphyrin Chemistry in

[288] Tumor Imaging and Photodynamic Therapy. Chem. Soc. Rev., 2011, 40, 340-362.

[289] Smith, A.M.; Mancini, M.C.; Nie, S. Bioimaging: Second Window for in vivo Imaging.

[290] Nat. Nanotechnol., 2009, 4, 710-711.

[291] Zwijnenburg, M.A. Photoluminescence in Semiconductor Nanoparticles: An Atomistic

[292] View of Excited State Relaxation in Nanosized Zns. Nanoscale, 2012, 4, 3711-3717

[293] Al-Sayyed, G.; D’Oliveira, J.-C.; Pichat, P. Semiconductor- Sensitized

[294] Photodegradation of 4-Chlorophenol in Water. J. Photochem. Photobiol. A., 1991, 58,

[295] -114.

[296] Tian, G.; Gu, Z.; Zhou, L.; Yin, W.; Liu, X.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, S.;

[297] Zhao, Y. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion

[298] Nanoparticles for in Vivo Imaging and Drug Delivery. Adv. Mater., 2012,

[299] , 1226-1231.

[300] Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and

[301] Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol., 2006, 6,

[302] -1166.

[303] Blasse, G. Scintillator Materials. Chem. Mater., 1994, 6, 1465-1475.

[304] Nikl, M. Scintillation Detectors for X-Rays. Meas. Sci. Technol., 2006, 17, 37−54.

[305] Seco, J.; Clasie, B.; Partridge, M. Review on the Characteristics of Radiation Detectors

[306] for Dosimetry and Imaging. Phys. Med. Biol., 2014, 59, R303−347.

[307] Hill, R.; Healy, B.; Holloway, L.; Kuncic, Z.; Thwaites, D.; Baldock, C. Advances in

[308] Kilovoltage X-Ray Beam Dosimetry. Phys. Med. Biol., 2014, 59, R183−231.

[309] Kamkaew, A.; Chen, F.; Zhan, Y.; Majewski, R.L.; Cai, W. Scintillating Nanoparticles

[310] as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano, 2016, 10,

[311] −3935.

[312] Punjabi, A.; Wu, X.; Tokatli-Apollon, A.; El-Rifai, M.; Lee, H.; Zhang, Y.; Wang, C.;

[313] Liu, Z.; Chan, E. M.; Duan, C.; Han, G. Amplifying the Red-Emission of Upconverting

[314] Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic

[315] Therapy. ACS Nano, 2014, 8, 10621-10630.

[316] Jiang, F.; Lilge, L.; Grenier, J.; Li, Y.; Wilson, M. D.; Chopp, M. Lasers Surg. Med.

[317] , 22, 74.

[318] Son, K. J.; Yoon, H. J.; Kim, J. H.; Jang, W. D.; Lee, Y.; Koh, W. G. Angew. Chem.,

[319] Int. Ed. 2011, 50, 11968.

[320] Banerjee, R.; Katsenovich, Y.; Lagos, L.; McIintosh, M.; Zhang, X.; Li, C.Z. Curr.

[321] Med. Chem. 2010, 17, 3120.

[322] Duguet, E.; Vasseur, S.; Mornet, S.; Devoisselle, J. M. Nanomedicine (London, U. K.)

[323] , 1, 157.

[324] Yu, M. K.; Park, J.; Jon, S. Drug Delivery Transl. Res., 2012, 2, 3.

[325] Samia, A.C.S.; Chen, X.B.; Burda, C. J. Am. Chem. Soc., 2003, 125, 15736.

[326] Gandra, N.; Chiu, P. L.; Li, W. B.; Anderson, Y. R.; Mitra, S.; He, H. X.; Gao, R. M.

[327] J. Phys. Chem., 2009, 113, 5182.

[328] Tu, H.L.; Lin, Y.S.; Lin, H.Y.; Hung, Y.; Lo, L.W.; Chen, Y.F.; Mou, C.Y. Adv. Mater.

[329] , 21, 172.

[330] Cell, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.;

[331] Hasan, T. Chem. Rev., 2010, 110, 2795.

[332] Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: an

[333] emerging paradigm. Adv Drug Deliv Rev., 2008, 60, 1627-1637.

[334] Kim, S. Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN. Organically modified

[335] silica nanoparticles co-encapsulating photosensitizing drug and aggregation enhanced

[336] two-photon absorbing fluorescent dye aggregates for two-photon photodynamic

[337] therapy. J Am Chem Soc., 2007, 129, 2669-2675.

[338] Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Biomaterials, 2011, 32, 6145.

[339] Rai, P.; Chang, S.K.; Mai, Z.; Neuman, D.; Hasan, T. Nanotechnology-based

[340] combination therapy improves treatment response in cancer models. Proc SPIE., 2009,

[341] , 73801-73811.

[342] Kessel, D. Erickson C. Porphyrin photosensitization of multi-drug resistant cell types.

[343] Photochem Photobiol., 1992, 55, 397-399.

[344] Weinberg, B.D.; Allison, R.R.; Sibata, C.; Parent, T.; Downie, G. Results of combined

[345] photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of

[346] obstructive endobronchial non-small cell lung cancer (NSCLC). Photodiagnosis

[347] Photodyn Ther. 2010, 7, 50-58.

[348] Solar, P.; Koval, J.; Mikes. J. et al. Erythropoietin inhibits apoptosis induced by

[349] photodynamic therapy in ovarian cancer cells. Mol Cancer Ther. 2008, 7, 2263-2271.

[350] Separovic, D.; Bielawski, J.; Pierce, J.S. et al. Increased tumour dihydroceramide

[351] production after Photofrin-PDT alone and improved tumour response after the

[352] combination with the ceramide analogue LCL29. Evidence from mouse squamous cell

[353] carcinomas. Br J Cancer. 2009, 100, 626-632.

[354] Weyergang, A.; Berg, K.; Kaalhus, O; Peng, Q.; Selbo, P.K. Photodynamic therapy

[355] targets the mTOR signaling network in vitro and in vivo. Mol Pharm. 2009, 6, 255-264.

[356] Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and

[357] photodynamic therapies for cancer treatment. Journal of Nanoscience and

[358] Nanotechnology, 2006, 6, 1159-1166

[359] Xu, J.; Gao, J.; Wei, Q. Combination of Photodynamic Therapy with Radiotherapy for

[360] Cancer Treatment. Journal of Nanomaterials, 2016, Article ID 8507924, 7 pages

[361] Rasheva VI, Domingos, P.M. Cellular responses to endoplasmic reticulum stress and

[362] apoptosis. Apoptosis, 2009, 14, 996-1007.

[363] Ferrario, A.; Rucker, N. Wong, S.; Luna, M.; Gomer, C.J. Survivin, a member of the

[364] inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for

[365] improving treatment response. Cancer Res., 2007, 67, 4989-4995.

[366] Szokalska, A.; Makowski, M.; Nowis, D. et al. Proteasome inhibition potentiates

[367] antitumor effects of photodynamic therapy in mice through induction of endoplasmic

[368] reticulum stress and unfolded protein response. Cancer Res., 2009, 69, 4235-4243.

[369] Golab, J.; Nowis, D.; Skrzycki, M. et al. Antitumor effects of photodynamic therapy

[370] are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem.,

[371] , 278, 407-414.

[372] Nowis, D.; Legat, M.; Grzela, T. et al. Heme oxygenase-1 protects tumor cells against

[373] photodynamic therapy-mediated cytotoxicity. Oncogene, 2006, 25, 3365-3374.

[374] Henderson, B.W.; Sitnik-Busch, T.M.; Vaughan, L.A. Potentiation of photodynamic

[375] therapy antitumor activity in mice by nitric oxide synthase inhibition is fluence rate

[376] dependent. Photochem Photobiol., 1999, 70, 64-71.

[377] Ferrario, A.; Von Tiehl, K.; Wong, S.; Luna, M.; Gomer, C.J. Cyclooxygenase-2

[378] inhibitor treatment enhances photodynamic ther- apy-mediated tumor response.

[379] Cancer Res., 2002, 62, 3956-3961.

[380] Ferrario, A.; von Tiehl, K.F.; Rucker, N.; Schwarz, M.A.; Gill, P.S.; Gomer, C.J.

[381] Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse

[382] mammary carcinoma. Cancer Res., 2000, 60, 4066-4069.

[383] Bhuvaneswari, R.; Yuen, G.Y.; Chee, S.K.; Olivo, M. Hypericin-mediated

[384] photodynamic therapy in combination with Avastin (bevacizumab) improves tumor

[385] response by downregulating angiogenic proteins. Photochem Photobiol Sci., 2007, 6,

[386] -1283.

[387] Cengel, K.A.; Hahn, S.M.; Glatstein, E. C225 and PDT combination therapy for

[388] ovarian cancer: the play’s the thing. J Natl Cancer Inst., 2005, 97, 1488-1489.

[389] Peng, Q.; Warloe, T.; Moan J, et al. Antitumor effect of 5-aminolevulinic acidmediated

[390] photodynamic therapy can be enhanced by the use of a low dose of photofrin in human

[391] tumor xenografts. Cancer Res., 2001, 61, 5824-5832.

[392] Fink, C.; Enk, A.; Gholam, P. Photodynamic therapy-Aspects of pain management.

[393] J. Dtsch Dermatol. Ges., 2015, 13, 15–22.

[394] Yano, T.; Muto, M.; Minashi, K.; Iwasaki, J.; Kojima, T.; Fuse, N.; Doi, T.; Kaneko,

[395] K.; Ohtsu, A. Photodynamictherapy as salvage treatment for local failure after

[396] chemoradiotherapy in patients with esophageal squamous cell carcinoma: A phase II

[397] study. Int. J. Cancer, 2012, 131, 1228–1234.

[398] Yano, T.; Muto, M.; Yoshimura, K.; Niimi, M.; Ezoe, Y.; Yoda, Y.; Yamamoto, Y.;

[399] Nishisaki, H.; Higashino, K.; Iishi, H. Phase I study of photodynamic therapy using

[400] talaporfin sodium and diode laser for local failure after chemoradiotherapy for

[401] esophageal cancer. Radiat. Oncol., 2012.

[402] De Visscher, S.A.; Melchers, L.J.; Dijkstra, P.U.; Karakullukcu, B.; Tan, I.B.; Hopper,

[403] C.; Roodenburg, J.L.; Witjes, M.J. mTHPC-mediated photodynamic therapy of early

[404] stage oral squamous cell carcinoma: A comparison to surgical treatment. Ann. Surg.

[405] Oncol., 2013, 20, 3076–3082.

[406] Castano,A.P.; Demidova, T.N.;Hamblin,M.R.Mechanisms in photodynamic therapy:

[407] Part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and

[408] modes of tumor destruction. Photodiagn. Photodyn. Ther. 2005, 2, 91-106.

[409] Vaupel, P.; Thews, O.; Hoeckel, M. Treatment resistance of solid tumors: Role of

[410] hypoxia and anemia. Med. Oncol., 2001, 18, 243–259.

[411] Casas, A.; Di Venosa, G.; Hasan, T.; Al, B. Mechanisms of resistance to photodynamic

[412] therapy. Curr. Med. Chem., 2011, 18, 2486–2515.

[413] Lovell, J.F.; Liu, T.W.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging

[414] and therapy. Chem. Rev., 2010, 110, 2839–2857.

[415] Guo, M.; Mao, H.; Li, Y.; Zhu, A.; He, H.; Yang, H.; Wang, Y.; Tian, X.; Ge, C.; Peng,

[416] Q.; Dual imaging-guided photothermal/photodynamic therapy using micelles

[417] Biomaterials, 2014, 35, 4656-4666.

[418] Taratula, O.; Patel, M.; Schumann, C.; Naleway, M.A.; Pang, A.J.; He, H.; Taratula, O.

[419] Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial

[420] phototherapy. Int. J. Nanomed., 2015, 10, 2347–2362.

[421] Lv, R.; Yang, P.; He, F.; Gai, S.; Li, C.; Dai, Y.; Yang, G.; Lin, J. A yolk-like

[422] multifunctional platform for multimodal imaging and synergistic therapy triggered by a

[423] single near-infrared light. ACS Nano, 2015, 9,1630–1647.

[424] Li, Y.; Lin, T.Y.; Luo, Y.; Liu, Q.; Xiao, W.; Guo, W.; Lac, D.; Zhang, H.; Feng, C.;

[425] Wachsmann-Hogiu, S.; et al. A smart and versatile theranostic nanomedicine platform

[426] based on nanoporphyrin. Nat. Commun. 2014.

[427] Master, A.; Livingston, M.; Sen Gupta, A. Photodynamic nanomedicine in the

[428] treatment of solid tumors:Perspectives and challenges. J. Control Release 2013, 168,

[429] -102.

[430] Gollnick, S.O.; Brackett, C.M. Enhancement of anti-tumor immunity by photodynamic

[431] therapy. Immunol. Res., 2010, 46, 216-226.

[432] Mroz, P.; Szokalska, A.; Wu, M.X.; Hamblin, M.R. Photodynamic therapy of tumors

[433] can lead to development of systemic antigen-specific immune response. PLoS ONE

[434] , 5, e15194.

[435] Anzengruber, F.; Avci, P.; de Freitas, L.F.; Hamblin, M.R. T-cell mediated anti-tumor

[436] immunity after photodynamic therapy: Why does it not always work and how can we

[437] improve it? Photochem. Photobiol. Sci., 2015, 14, 1492–1509.

[438] Mroz, P.; Hashmi, J.T.; Huang, Y.Y.; Lange, N.; Hamblin, M.R. Stimulation of anti-

[439] tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 2011, 7, 75-91.

[440] St Denis, T.G.; Aziz, K.; Waheed, A.A.; Huang, Y.Y.; Sharma, S.K.; Mroz, P.;

[441] Hamblin, M.R. Combination approaches to potentiate immune response after

[442] photodynamic therapy for cancer. Photochem. Photobiol. Sci., 2011, 10, 792-801.

[443] Xia, Y.; Gupta, G.K.; Castano, A.P.; Mroz, P.; Avci, P.; Hamblin, M.R. Cpg

[444] oligodeoxynucleotide as immune adjuvant enhances photodynamic therapy response in

[445] murine metastatic breast cancer. J. Biophotonics, 2014, 7, 897-905.

[446] Igney, F.H.; Krammer, P.H. Immune escape of tumors: Apoptosis resistance and tumor

[447] counterattack. J. Leukoc. Biol., 2002, 71, 907-920.

[448] Mroz, P.; Vatansever, F.; Muchowicz, A.; Hamblin, M.R. Photodynamic therapy of

[449] murine mastocytoma induces specific immune responses against the cancer/testis

[450] antigen P1A. Cancer Res. 2013, 73, 6462-6470.

[451] Korbelik, M. Cancer vaccines generated by photodynamic therapy. Photochem.

[452] Photobiol. Sci. 2011, 10, 664-669.

[453] Gollnick, S.O.; Vaughan, L.; Henderson, B.W. Generation of effective antitumor

[454] vaccines using photodynamic therapy. Cancer Res., 2002, 62, 1604-1608.

[455] Zheng, Y.; Yin, G.; Le, V.; Zhang, A.; Chen, S.; Liang, X.; Liu, J. Photodynamic-

[456] therapy activates immune response by disrupting immunity homeostasis of tumor cells,

[457] which generates vaccine for cancer therapy. Int. J. Biol. Sci., 2016, 12, 120-132.

[458] Korbelik, M.; Sun, J. Photodynamic therapy-generated vaccine for cancer therapy.

[459] Cancer Immunol. Immunother., 2006, 55, 900-909.


  • There are currently no refbacks.
Copyright © 2020 Bashir Ahmad Dar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.