Photodynamic Therapy in the Treatment of Cancer: A review
Article ID: 780
DOI: https://doi.org/10.30564/jim.v8i1.780
Abstract
Keywords
Full Text:

References
[1] "Cancer Fact sheet N°297". WHO. February 2014. Retrieved 10 June 2014
[2] "Defining Cancer". National Cancer Institute. Retrieved 10 June 2014.
[3] "Cancer -Signs and symptoms". NHS Choices. Retrieved 10 June 2014.
[4] "How is cancer diagnosed?". ACS. 2013-01-29. Retrieved 10 June 2014.
[5] Ferrari, M. Nat. Rev. Cancer 2005, 5, 161.
[6] Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nat.
[7] Nanotechnol. 2007, 2, 751.
[8] Bergh, J. Quo vadis with targeted drugs in the 21st century? J. Clin. Oncol. 2009, 27, 2-5.
[9] Fojo, T.; Grady, C. How much is life worth: cetuximab, non-small cell lung cancer, and
[10] the $440 billion question, J. Natl. Cancer Inst. 2009, 101, 1044-1048.
[11] Hampton, T. Targeted cancer therapies lagging: better trial design could boost success
[12] rate. JAMA. 2006, 296, 1951-1952.
[13] Dougherty, T. ; Grindey, G. B.; Fiel, R.; Weishaupt, K. R.; Boyle, D. G. J. Natl. Cancer
[14] Inst. 1975, 55, 115.
[15] (a) Oleinick, N. L.; Morris, R. L.; Belichenko, I. Photochem. Photobiol. Sci. 2002, 1, 1.
[16] (b) Sharman, W.M.; Allen, C. M.; van Lier, J. E. Methods Enzymol. 2000, 319, 376.
[17] (c) Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy,
[18] Chem. Rev. 2015, 115, 1990−2042
[19] van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, Robinson, S.D.J. Oncologic
[20] Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions,
[21] Cancers 2017, 9, 19.
[22] Coleman, M.P.; Quaresma, M.; Berrino, F.; Lutz, J-M.; De Angelis, R.R.; Capocaccia,
[23] R.R. Cancer survival in five continents: a worldwide population-based study
[24] (CONCORD). Lancet Oncol, 2008, 9, 730-56.
[25] Agostinis, P.; Berg, K.; Cengel, K.A.; Foster T.H. et al. Photodynamic Therapy of
[26] Cancer: An Update, CA Cancer J Clin. 2011, 61, 250-281.
[27] Dougherty,T.; Kaufman, J.; Goldfarb, A.; Weishaupt, K.; Boyle, D.; Mittleman, A.
[28] Photoradiation therapy for the treatment of malignant tumors, Cancer Res. 1978,
[29] -2635.
[30] Kato, H.; Horai, T.; Furuse, K.; Fukuoka, M.; Suzuki, S.; Hiki, Y.; Ito, Y.; Mimura, S.;
[31] Tenjin, Y.; Hisazumi, H.; et al., Photodynamic therapy for cancers: a clinical trial of
[32] porfimer sodium in Japan, Jpn. J. Cancer Res. 1993, 84,1209–1214.
[33] Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn,
[34] S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.;
[35] Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J.; Photodynamic therapy of cancer:
[36] an update, CA Cancer J. Clin. 2011, 61, 250–281.
[37] L.A.; Torre, Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality
[38] rates and trends-an update, Cancer Epidemiol. Biomarkers Prev. 2016, 25, 16–27.
[39] De Santis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast Cancer statistics 2013, CA Cancer J.
[40] Clin. 2014, 64, 52-62.
[41] Veronesi, U.; Boyle, P.; Goldhirsch, A.; Orecchia, R.; Viale. G. Breast Cancer, Lancet
[42] , 365, 1727-41.
[43] Data were provided by the Office for National Statistics on request, March 2013.
[44] http://www.ons.gov.uk/ons/publications/all-releases.html?definition¼tcm%3A77-27475.
[45] Shishkova, N.; Kuznetsova, O.; Berezov, T. Photodynamic therapy for gynecological
[46] diseases and breast Cancer, Cancer Biol Med. 2012, 9, 2095-3941.
[47] Taber, S.W.; Fingar, V.H.; Coots, C.T.; Weiman, T.J. Photodynamic therapy using
[48] mono-L-aspartyl chlorine6 (Npe6) for the treatment of cutaneous disease: a phase I
[49] clinical study, Clin. Cancer Res. 1998, 4, 2741-6.
[50] Khan, S.A.; Dougherty, T.J.; Mang, T.S. An evaluation of photodynamic therapy in the
[51] management of cutaneous metastases of breast cancer, Eur. J. Cancer, 1993, 29A,
[52] -90.
[53] Duhem, N.; Danhier, F.; Préat, V. Vitamin E-based nanomedicines for anti-cancer drug
[54] delivery, J. Contr. Release 2014, 182, 33–44.
[55] Duhem, N.; Danhier, F.; Pourcelle, V.; Schumers, J.-M.; Bertrand, O.; LeDuff, C.S.;
[56] Hoeppener, S. Schubert, U.S.; Gohy, J.-F.; Marchand-Brynaert, J.; Préat, V. Self
[57] assembling doxorubicin–tocopherol succinate prodrug as a new drug delivery system:
[58] synthesis, characterization, and in vitro and in vivo Anticancer Activity, Bioconjugate
[59] Chem. 2014, 25, 72-81.
[60] Danhier, F.; Kouhé, T.T.B.; Duhem, N.; Ucakar, B.; Staub, A.; Draoui, N.; Feron, O.;
[61] Préat, V. Vitamin E-based micelles enhance the anticancer activity of doxorubicin, Int. J.
[62] Pharm. 2014, 476, 9-15.
[63] Pais-Silva, C.; de Melo-Diogo, D.; Correia, I.J. IR780-loaded TPGS-TOS micelles for
[64] breast cancer photodynamic therapy, Eur. J. Pharm. Biopharm. 2017, 113, 108-117.
[65] Wyss, P.; Schwarz, V.; Dobler-Girdziunaite, D.; Homung, R.; Walt, H.; Degen, A. et al.
[66] Photodynamic therapy of locoregional breast cancer recurrences using a chlorine type
[67] photosensitizer, Int J Cancer, 2001, 93, 720-4.
[68] Cuenca, R.E.; Allison, R.R.; Sibata, C.; Downie, G.H. Breast cancer with chest wall
[69] progression: treatment with photodynamic therapy. Ann Surg Oncol 2004, 11, 322-7.
[70] Li, X.; Ferrel, G.I.; Guerra, M.C.; Hode, T.; Lunn, J.; Adalsteinsson, O. et al.
[71] Preliminary safety and efficacy results of laser immunotherapy for the treatment of
[72] metastatic breast cancer patients, Photochem. Photobiol. Sci. 2011, 10, 817-21.
[73] Gollnick, S.O.; Vaughan, L.; Henderson, B.W. Generation of effective anti-tumor
[74] vaccines using photodynamic therapy, Cancer Res. 2002, 62, 1604-8.
[75] Globocan, 2012, Estimated Cancer Incidence, Mortality and PrevalenceWorldwide in
[76] Information and online prediction. WHO InternationalAgency for Research of
[77] Cancer. (accessed 10.04.15).
[78] Siegel, R.; De Santis, C.; Jemal, A. Colorectal cancer statistics, 2014, CA Cancer J. Clin.
[79] , 64, 104–117.
[80] Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.;
[81] Comber, H. et al., Cancer incidence and mortality patterns in Europe: Estimatesfor 40
[82] countries in 2012, Eur. J. Cancer 2013, 49, 1374–1403.
[83] Edwards, M.S.; Chadda, S.D.; Zhao, Z.; Barber, B.L.; Sykes, D.P. A systematic review
[84] of treatment guidelines for metastatic colorectal cancer, Colorectal Dis. 2011, 14, 31-47.
[85] McQuade, R.M.; Bornstein, J.C.; Nurgali, K. Anti-colorectal cancer chemotherapy-
[86] induced diarrhoea: current treatments and side-effects, Int J. Clin. Med. 2014, 5, 393-406
[87] Allen, W.L.; Stevenson, L.; Coyle, V.M.; Jithesh, P.V.; Proutski, I.; Carson, G. et al.,
[88] A systems biology approach identifies SART1 as a novel determinant of both 5-FU and
[89] SN38 drug resistance in colorectal cancer. Mol. Cancer Ther. 2012, 11, 119-131.
[90] Thaler, J.; Karthaus, M.; Mineur, L.; Greil, R.; Letocha, H.; Hofheinz, R. et al.
[91] Skin toxicity and quality of life in patients with metastatic colorectal cancerduring first-
[92] line panitumumab plus FOLFIRI treatment in a single arm phaseII study, BMC Cancer
[93] , 12, 438-448.
[94] Regula, J.; MacRobert, A.J.; Gorchein, A.; Buonaccorsi, G.A.; Thorpe, S.M.; Spencer,
[95] G.M. et al., Photosensitisation and photodynamic therapy of oesophageal, duodenal and
[96] colorectal tumours using 5 aminolaevulinic acidinduced protoporphyrin IX: a pilot study,
[97] Gut 1995, 36, 67-75.
[98] Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O. et al.,
[99] Photodynamic therapy of cancer: an update, CA Cancer J. Clin. 2011, 61, 250-281.
[100] Bugaj, A.M. Targeted photodynamic therapy-a promising modality of cancer treatment,
[101] Photochem. Photobiol. Sci. 2011, 10, 1097-1109.
[102] Kiesslich, T.; Krammer, B.; Plaetzer, K. Cellular mechanisms and prospective
[103] applications of hypericin in photodynamic therapy, Curr. Med. Chem. 2006, 13,
[104] -2204.
[105] Vignais, P.M.; Vignais, P. Discovering Life, Manufacturing Life: How the Experimental
[106] Method Shaped Life Sciences, Springer, Berlin, 2010, pp.219–225
[107] Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin,
[108] D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources,
[109] methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, 359-386.
[110] Paul, S.; Altorki, N. Outcomes in the management of esophageal cancer. J. Surg. Oncol.
[111] , 110, 599-610.
[112] Sjoquist, K.M.; Burmeister, B.H.; Smithers, B.M.; Zalcberg, J.R.; Simes, R.J.; Barbour,
[113] A.; Gebski, V.; Australasian Gastro-Intestinal Trials, G. Survival after neoadjuvant
[114] chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: An updated
[115] meta-analysis. Lancet Oncol. 2011, 12, 681-692.
[116] Ronellenfitsch, U.; Schwarzbach, M.; Hofheinz, R.; Kienle, P.; Kieser, M.; Slanger,
[117] T.E.; Jensen, K.; GE Adenocarcinoma meta analysis Group. Perioperative
[118] chemo(radio)therapy versus primary surgery for resectable adenocarcinoma of the
[119] stomach, gastroesophageal junction, and lower esophagus. Cochrane Database Syst. Rev.
[120]
[121] Keeley, S.B.; Pennathur, A.; Gooding,W.; Landreneau, R.J.; Christie, N.A.; Luketich, J.
[122] Photodynamic therapy with curative intent for barrett’s esophagus with high grade
[123] dysplasia and superficial esophageal cancer. Ann. Surg. Oncol. 2007, 14, 2406-2410.
[124] Yachimski, P.; Puricelli, W.P.; Nishioka, N.S. Patient predictors of histopathologic
[125] response after photodynamic therapy of barrett’s esophagus with high-grade dysplasia or
[126] intramucosal carcinoma. Gastrointest. Endosc. 2009, 69, 205-212.
[127] Gill, K.R.; Wolfsen, H.C.; Preyer, N.W.; Scott, M.V.; Gross, S.A.; Wallace, M.B.;
[128] Jones, L.R. Pilot study on light dosimetry variables for photodynamic therapy of barrett’s
[129] oesophagus with high-grade dysplasia. Clin. Cancer Res. 2009, 15, 1830-1836.
[130] Yoon, H.Y.; Cheon, Y.K.; Choi, H.J.; Shim, C.S. Role of photodynamic therapy in the
[131] palliation of obstructing esophageal cancer. Korean J. Intern. Med. 2012, 27, 278-284.
[132] Mackenzie, G.D.; Dunn, J.M.; Selvasekar, C.R.; Mosse, C.A.; Thorpe, S.M.; Novelli,
[133] M.R.; Bown, S.G.; Lovat, L.B. Optimal conditions for successful ablation of high-grade
[134] dysplasia in barrett’s oesophagus using aminolaevulinic acid photodynamic therapy.
[135] Lasers Med. Sci. 2009, 24, 729-734
[136] Berr, F.; Wiedmann, M.; Tannapfel, A.; Halm, U.; Kohlhaw, K.; Schmidt, F.; Wittekind,
[137] C.; Hauss, J.; Mössner, J. Photodynamic therapy for advanced bile duct cancer: evidence
[138] for improved palliation and extended survival. Hepatology, 2000, 31, 291-298
[139] Dumoulin, F.; Gerhardt, T.; Fuchs, S.; Scheurlen, C.; Neubrand, M.; Layer, G.;
[140] Sauerbruch, T. Phase II. Study of photodynamic therapy and metal stent aspalliative
[141] treatment for non resectable hilar cholangiocarcinoma. Gastrointest. Endosc., 2003, 57,
[142] -867
[143] Kato, H.; Furukawa, K.; Sato, M.; Okunaka, T.; Kusunoki, Y.; Kawahara, M.; Fukuoka,
[144] M.; Miyazawa, T.; Yana, T.; Matsui, K.; Shiraishi I.I. T: Phase, clinical study of
[145] photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laserfor early
[146] superficial squamous cell carcinoma of the lung. Lung Cancer, 2003, 42, 103-111.
[147] Jerjes, W.; Upile, T.; Akram, S.; Hopper, C. The surgical palliation of advanced head
[148] and neck cancer using photodynamic therapy. Clin Oncol (R Coll Radiol), 2010, 22,
[149] -791.
[150] M.A. Biel, Photodynamic therapy and the treatment of head and neck neoplasia.
[151] Laryngoscope. 1998, 108, 1259-1268.
[152] M.A. Biel, Advances in photodynamic therapy for the treatment of head and neck
[153] cancers. Lasers Surg. Med. 2006, 38, 349-355
[154] G.S.; Keller, Doiron, D.R.; Fisher, G.U. Photodynamic therapy in otolaryngology-head
[155] and neck surgery. Arch Otolaryngol. 1985, 111, 758-761.
[156] Feyh, J.; Goetz, A.; Muller, W.; Konigsberger, R.; Kastenbauer, E. Photodynamic
[157] therapy in head and neck surgery. J. Photochem. Photobiol. B. 1990, 7, 353-358.
[158] Feyh, J.; Gutmann, A.; Leunig, A. A photodynamic therapy in head and neck surgery.
[159] Laryngol Rhinol. Otol. 1993, 72, 273-278.
[160] Mimikos, C.; Shafirstein, G.; Arshad, H. Current state and future of photodynamic
[161] therapy for the treatment of head and neck squamous cell carcinoma. World Journal of
[162] Otorhinolaryngology-Head and Neck Surgery, XX, 2016, 1-4
[163] Hopper, C.; Kubler, A.; Lewis, H.; Tan, I.B.; Putnam, G. mTHPC-mediated
[164] photodynamic therapy for early oral squamous cell carcinoma. Int. J. Cancer. 2004, 111,
[165] -146.
[166] Fan, K.F.; Hopper, C.; Speight, P.M.; Buonaccorsi, G.; MacRobert, A.J.; Bown, S.G.
[167] Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant
[168] lesions of the oral cavity. Cancer 1996, 78, 1374-1383.
[169] Copper, M.P.; Triesscheijn, M.; Tan, I.B.; Ruevekamp, M.C.; Stewart, F.A.
[170] Photodynamic therapy in the treatment of multiple primary tumours in the head and
[171] neck, located to the oral cavity and oropharynx. Clin Otolaryngol, 2007, 32, 185-189.
[172] D’Cruz, A.K.; Robinson, M.H.; Biel, M.A. mTHPC-mediated photodynamic therapy in
[173] patients with advanced, incurable head and neck cancer: a multicenter study of 128
[174] patients. Head Neck 2004, 26, 232-240.
[175] Grant, W.E.; Hopper, C.; MacRobert, A.J.; Speight, P.M.; Bown, S.G. Photodynamic
[176] therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. Lancet.
[177] , 1993, 147-148.
[178] Sieron, A.; Namyslowski, G.; Misiolek, M.; Adamek, M.; Kawczyk-Krupka, A.
[179] Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and
[180] hypopharyngeal cancers. Eur. Arch. Otorhinolaryngol. 2001, 258, 349-352.
[181] Nathan, T.R.; Whitelaw, D.E.; Chang, S.C. et al. Photodynamic therapy for prostate
[182] cancer recurrence after radiotherapy: a phase I study. J. Urol. 2002, 168, 1427-1432.
[183] Du, K.L.; Mick, R.; Busch, T.M. et al. Preliminary results of interstitial motexafin
[184] lutetium-mediated PDT for prostate cancer. Lasers Surg. Med., 2006, 38, 427-434
[185] Patel, H.; Mick, R.; Finlay, J. et al. Motexafin lutetium-photodynamic therapy of
[186] prostate cancer: short- and long-term effects on prostate-specific antigen. Clin Cancer
[187] Res. 2008, 14, 4869-4876.
[188] Weersink, R.A.; Forbes, J.; Bisland, S. et al. Assessment of cutaneous photosensitivity
[189] of TOOKAD (WST09) in preclinical animal models and in patients. Photochem.
[190] Photobiol. 2005, 81, 106-113.
[191] Trachtenberg, J.; Bogaards, A. Weersink, R.A. et al. Vascular targeted photodynamic
[192] therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate
[193] cancer following definitive radiation therapy: assessment of safety and treatment
[194] response. J Urol. 2007, 178, 1974-1979
[195] Trachtenberg, J.; Weersink, R.A.; Davidson, S.R. et al. Vascular-targeted photodynamic
[196] therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external
[197] beam radiotherapy: a study of escalating light doses. BJU Int. 2008, 102, 556-562.
[198] Prout Jr, G.R.; C.W.; Lin, Benson Jr, R. et al. Photodynamic therapy with
[199] hematoporphyrin derivative in the treatment of superficial transitional-cell carcinoma of
[200] the Bladder. N Engl J Med., 1987, 317, 1251-1255.
[201] Uchibayashi, T.; Koshida, K.; Kunimi, K.; Hisazumi, H. Whole bladder wall
[202] photodynamic therapy for refractory carcinoma in situ of the bladder. Br. J. Cancer.,
[203] , 71, 625-628.
[204] D’Hallewin, M.A.; Baert, L. Long-term results of whole bladder wall photodynamic
[205] therapy for carcinoma in situ of the bladder. Urology, 1995, 45, 763-767.
[206] Nseyo, U.O.; Shumaker, B.; Klein, E.A.; Sutherland, K. Photodynamic therapy using
[207] porfimer sodium as an alternative to cystectomy in patients with refractory transitional
[208] cell carcinoma in situ of the bladder, Bladder Photofrin Study Group. J Urol., 1998,
[209] , 39-44.
[210] Berger, A.P.; Steiner, H.; Stenzl, A.; Akkad, T.; Bartsch, G.; Holtl, L. Photodynamic
[211] therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent
[212] superficial bladder cancer: a single-center study. Urology., 2003, 61, 338-341.
[213] Waidelich, R.; Beyer, W.; Knuchel, R. et al. Whole bladder photodynamic therapy with
[214] -aminolevulinic acid using a white light source, Urology. 61(2003) 332-337.
[215] Jocham, D.; von Wietersheim, Pfluger, J.H. et al. BCG versus photodynamic therapy
[216] (PDT) for nonmuscle invasive bladder cancer-a multicentre clinical phase III study
[217] [in German]. Aktuelle Urol., 2009, 40, 91-99.
[218] Pinthus, J.H.; Bogaards, A.; Weersink, R.; Wilson, B.C. Trachtenberg J. Photodynamic
[219] therapy for urological malignancies: past to current approaches. J Urol. 2006, 175,
[220] -1207.
[221] Skyrme, R.J.; French, A.J.; Datta, S.N.; Allman, R.; Mason, M.D.; Matthews, P.N. A
[222] phase-1study of sequential mitomycin C and 5- aminolaevulinic acid-mediated
[223] photodynamic therapy in recurrent superficial bladder carcinoma. BJU Int. 2005, 95,
[224] -1210.
[225] Hayata, Y.; Kato, H.; Konaka, C.; Ono, J.; Takizawa, N. Hematoporphyrin derivative
[226] and laser photoradiation in the treatment of lung cancer. Chest., 1982, 81, 269-277.
[227] LoCicero 3rd J.; Metzdorff, M.; Almgren, C. Photodynamic therapy in the palliation of
[228] late stage obstructing non-small cell lung cancer. Chest. 1990, 98, 97-100.
[229] McCaughan, J.S. Jr; Williams, T.E. Photodynamic therapy for endobronchial malignant
[230] disease: a prospective fourteen-year study. J. Thorac. Cardiovasc Surg., 1997, 114,
[231] -946
[232] Diaz-Jimenez, J.P.; Martinez-Ballarin, J.E.; Llunell, A.; Farrero, E.; Rodriguez, A.;
[233] Castro, M.J. Efficacy and safety of photodynamic therapy versus Nd-YAG laser
[234] resection in NSCLC with airway obstruction. Eur. Respir J. 1999, 14, 800-805.
[235] S.; Lam, Muller, N.L.; Miller, R.R. et al. Laser treatment of obstructive endobronchial
[236] tumors: factors which determine response. Lasers Surg. Med. 1987, 7, 29-35.
[237] Furuse, K.; Fukuoka, M.; Kato, H. et al. A prospective phase II study on photodynamic
[238] therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung
[239] Cancer Photodynamic Therapy Study Group. J. Clin. Oncol. 1993, 11, 1852-1857.
[240] Corti, L.; Toniolo, L.; Boso, C. et al. Longterm survival of patients treated with
[241] photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma.
[242] Lasers Surg. Med. 2007, 39, 394-402
[243] Usuda, J.; Ichinose, S.; Ishizumi, T. et al. Outcome of photodynamic therapy using NPe6
[244] for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res.
[245] , 16, 2198-2204.
[246] Minnich, D.J.; Bryant, A.S.; Dooley, A.; Cerfolio, R.J. Photodynamic laser therapy for
[247] lesions in the airway. Ann. Thorac. Surg., 2010, 89, 1744-1748
[248] Moskal, T.L.; Dougherty, T.J.; Urschel, J.D. et al. Operation and photodynamic therapy
[249] for pleural mesothelioma: 6-year follow- up. Ann. Thorac. Surg. 1998, 66, 1128-1133.
[250] Friedberg, J.S.; Cengel, K.A. Pleural malignancies. Semin. Radiat. Oncol. 2010, 20,
[251] -214.
[252] Kostron, H. Photodynamic diagnosis and therapy and the brain. Methods Mol. Biol.,
[253] , 635, 261-280.
[254] Perria, C.; Capuzzo, T.; Cavagnaro, G. et al. Fast attempts at the photodynamic
[255] treatment of human gliomas. J. Neurosurg. Sci., 1980, 24, 119-129.
[256] Kaye, A.H.; Morstyn, Brownbill, G.D. Adjuvant high-dose photoradiation therapy in the
[257] treatment of cerebral glioma: a phase 1-2 study. J. Neurosurg., 1987, 67, 500-505.
[258] Muller, P.J.; Wilson, B.C. Photodynamic therapy for recurrent supratentorial gliomas.
[259] Semin. Surg. Oncol., 1995, 11, 346-354.
[260] Krishnamurthy, S.; Powers, S.K.; Witmer, P.; Brown, T. Optimal light dose for
[261] interstitial photodynamic therapy in treatment for malignant brain tumors.
[262] Lasers Surg. Med., 2000, 224-234.
[263] Kostron, H.; Fritsch, E.; Grunert, V. Photodynamic therapy of malignant brain tumours:
[264] a phase I/II trial. Br. J. Neurosurg. 1988, 2, 241-248.
[265] Marks, P.V.; Belchetz, P.E.; Saxena, A. et al. Effect of photodynamic therapy on
[266] recurrent pituitary adenomas: clinical phase I/II trial-an early report. Br. J. Neurosurg.
[267] , 14, 317-325.
[268] Eljamel, S. Photodynamic assisted surgical resection and treatment of malignant brain
[269] tumors; technique, technology and clinical application. Photodiag. Photodyn. Ther.
[270] , 1, 93-98.
[271] Muller, P.; Wilson, B. Photodynamic therapy of brain tumours-post-operative ‘‘field
[272] fractionation.’’ J. Photochem. Photobiol. B. 1991, 9, 117-119.
[273] Stummer, W.; Novotny, A.; Stepp, H.; Goetz, C.; Bise, K.; Reulen, H.J. Fluorescence-
[274] guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced
[275] porphyrins: a prospective study in 52 consecutive patients. J. Neurosurg., 2000,
[276] , 1003-1013.
[277] Stylli, S.S.; A.H.; Kaye, MacGregor, L.; Howes, M.; Rajendra, P. Photodynamic
[278] therapy of high grade glioma-long term survival. J. Clin. Neurosci., 2005, 12, 389-398.
[279] Muller, P.J.; Wilson, B.C. Photodynamic therapy of brain tumors-a work in progress.
[280] Lasers Surg Med., 2006, 38, 384-389
[281] Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J.
[282] Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant
[283] glioma: a randomised controlled multicentre phase III trial. Lancet Oncol., 2006, 7,
[284] -401
[285] Jacques, S.L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol.,
[286] , 58, 37-61.
[287] Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K. The Role of Porphyrin Chemistry in
[288] Tumor Imaging and Photodynamic Therapy. Chem. Soc. Rev., 2011, 40, 340-362.
[289] Smith, A.M.; Mancini, M.C.; Nie, S. Bioimaging: Second Window for in vivo Imaging.
[290] Nat. Nanotechnol., 2009, 4, 710-711.
[291] Zwijnenburg, M.A. Photoluminescence in Semiconductor Nanoparticles: An Atomistic
[292] View of Excited State Relaxation in Nanosized Zns. Nanoscale, 2012, 4, 3711-3717
[293] Al-Sayyed, G.; D’Oliveira, J.-C.; Pichat, P. Semiconductor- Sensitized
[294] Photodegradation of 4-Chlorophenol in Water. J. Photochem. Photobiol. A., 1991, 58,
[295] -114.
[296] Tian, G.; Gu, Z.; Zhou, L.; Yin, W.; Liu, X.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, S.;
[297] Zhao, Y. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion
[298] Nanoparticles for in Vivo Imaging and Drug Delivery. Adv. Mater., 2012,
[299] , 1226-1231.
[300] Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and
[301] Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol., 2006, 6,
[302] -1166.
[303] Blasse, G. Scintillator Materials. Chem. Mater., 1994, 6, 1465-1475.
[304] Nikl, M. Scintillation Detectors for X-Rays. Meas. Sci. Technol., 2006, 17, 37−54.
[305] Seco, J.; Clasie, B.; Partridge, M. Review on the Characteristics of Radiation Detectors
[306] for Dosimetry and Imaging. Phys. Med. Biol., 2014, 59, R303−347.
[307] Hill, R.; Healy, B.; Holloway, L.; Kuncic, Z.; Thwaites, D.; Baldock, C. Advances in
[308] Kilovoltage X-Ray Beam Dosimetry. Phys. Med. Biol., 2014, 59, R183−231.
[309] Kamkaew, A.; Chen, F.; Zhan, Y.; Majewski, R.L.; Cai, W. Scintillating Nanoparticles
[310] as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano, 2016, 10,
[311] −3935.
[312] Punjabi, A.; Wu, X.; Tokatli-Apollon, A.; El-Rifai, M.; Lee, H.; Zhang, Y.; Wang, C.;
[313] Liu, Z.; Chan, E. M.; Duan, C.; Han, G. Amplifying the Red-Emission of Upconverting
[314] Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic
[315] Therapy. ACS Nano, 2014, 8, 10621-10630.
[316] Jiang, F.; Lilge, L.; Grenier, J.; Li, Y.; Wilson, M. D.; Chopp, M. Lasers Surg. Med.
[317] , 22, 74.
[318] Son, K. J.; Yoon, H. J.; Kim, J. H.; Jang, W. D.; Lee, Y.; Koh, W. G. Angew. Chem.,
[319] Int. Ed. 2011, 50, 11968.
[320] Banerjee, R.; Katsenovich, Y.; Lagos, L.; McIintosh, M.; Zhang, X.; Li, C.Z. Curr.
[321] Med. Chem. 2010, 17, 3120.
[322] Duguet, E.; Vasseur, S.; Mornet, S.; Devoisselle, J. M. Nanomedicine (London, U. K.)
[323] , 1, 157.
[324] Yu, M. K.; Park, J.; Jon, S. Drug Delivery Transl. Res., 2012, 2, 3.
[325] Samia, A.C.S.; Chen, X.B.; Burda, C. J. Am. Chem. Soc., 2003, 125, 15736.
[326] Gandra, N.; Chiu, P. L.; Li, W. B.; Anderson, Y. R.; Mitra, S.; He, H. X.; Gao, R. M.
[327] J. Phys. Chem., 2009, 113, 5182.
[328] Tu, H.L.; Lin, Y.S.; Lin, H.Y.; Hung, Y.; Lo, L.W.; Chen, Y.F.; Mou, C.Y. Adv. Mater.
[329] , 21, 172.
[330] Cell, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.;
[331] Hasan, T. Chem. Rev., 2010, 110, 2795.
[332] Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: an
[333] emerging paradigm. Adv Drug Deliv Rev., 2008, 60, 1627-1637.
[334] Kim, S. Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN. Organically modified
[335] silica nanoparticles co-encapsulating photosensitizing drug and aggregation enhanced
[336] two-photon absorbing fluorescent dye aggregates for two-photon photodynamic
[337] therapy. J Am Chem Soc., 2007, 129, 2669-2675.
[338] Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Biomaterials, 2011, 32, 6145.
[339] Rai, P.; Chang, S.K.; Mai, Z.; Neuman, D.; Hasan, T. Nanotechnology-based
[340] combination therapy improves treatment response in cancer models. Proc SPIE., 2009,
[341] , 73801-73811.
[342] Kessel, D. Erickson C. Porphyrin photosensitization of multi-drug resistant cell types.
[343] Photochem Photobiol., 1992, 55, 397-399.
[344] Weinberg, B.D.; Allison, R.R.; Sibata, C.; Parent, T.; Downie, G. Results of combined
[345] photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of
[346] obstructive endobronchial non-small cell lung cancer (NSCLC). Photodiagnosis
[347] Photodyn Ther. 2010, 7, 50-58.
[348] Solar, P.; Koval, J.; Mikes. J. et al. Erythropoietin inhibits apoptosis induced by
[349] photodynamic therapy in ovarian cancer cells. Mol Cancer Ther. 2008, 7, 2263-2271.
[350] Separovic, D.; Bielawski, J.; Pierce, J.S. et al. Increased tumour dihydroceramide
[351] production after Photofrin-PDT alone and improved tumour response after the
[352] combination with the ceramide analogue LCL29. Evidence from mouse squamous cell
[353] carcinomas. Br J Cancer. 2009, 100, 626-632.
[354] Weyergang, A.; Berg, K.; Kaalhus, O; Peng, Q.; Selbo, P.K. Photodynamic therapy
[355] targets the mTOR signaling network in vitro and in vivo. Mol Pharm. 2009, 6, 255-264.
[356] Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and
[357] photodynamic therapies for cancer treatment. Journal of Nanoscience and
[358] Nanotechnology, 2006, 6, 1159-1166
[359] Xu, J.; Gao, J.; Wei, Q. Combination of Photodynamic Therapy with Radiotherapy for
[360] Cancer Treatment. Journal of Nanomaterials, 2016, Article ID 8507924, 7 pages
[361] Rasheva VI, Domingos, P.M. Cellular responses to endoplasmic reticulum stress and
[362] apoptosis. Apoptosis, 2009, 14, 996-1007.
[363] Ferrario, A.; Rucker, N. Wong, S.; Luna, M.; Gomer, C.J. Survivin, a member of the
[364] inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for
[365] improving treatment response. Cancer Res., 2007, 67, 4989-4995.
[366] Szokalska, A.; Makowski, M.; Nowis, D. et al. Proteasome inhibition potentiates
[367] antitumor effects of photodynamic therapy in mice through induction of endoplasmic
[368] reticulum stress and unfolded protein response. Cancer Res., 2009, 69, 4235-4243.
[369] Golab, J.; Nowis, D.; Skrzycki, M. et al. Antitumor effects of photodynamic therapy
[370] are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem.,
[371] , 278, 407-414.
[372] Nowis, D.; Legat, M.; Grzela, T. et al. Heme oxygenase-1 protects tumor cells against
[373] photodynamic therapy-mediated cytotoxicity. Oncogene, 2006, 25, 3365-3374.
[374] Henderson, B.W.; Sitnik-Busch, T.M.; Vaughan, L.A. Potentiation of photodynamic
[375] therapy antitumor activity in mice by nitric oxide synthase inhibition is fluence rate
[376] dependent. Photochem Photobiol., 1999, 70, 64-71.
[377] Ferrario, A.; Von Tiehl, K.; Wong, S.; Luna, M.; Gomer, C.J. Cyclooxygenase-2
[378] inhibitor treatment enhances photodynamic ther- apy-mediated tumor response.
[379] Cancer Res., 2002, 62, 3956-3961.
[380] Ferrario, A.; von Tiehl, K.F.; Rucker, N.; Schwarz, M.A.; Gill, P.S.; Gomer, C.J.
[381] Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse
[382] mammary carcinoma. Cancer Res., 2000, 60, 4066-4069.
[383] Bhuvaneswari, R.; Yuen, G.Y.; Chee, S.K.; Olivo, M. Hypericin-mediated
[384] photodynamic therapy in combination with Avastin (bevacizumab) improves tumor
[385] response by downregulating angiogenic proteins. Photochem Photobiol Sci., 2007, 6,
[386] -1283.
[387] Cengel, K.A.; Hahn, S.M.; Glatstein, E. C225 and PDT combination therapy for
[388] ovarian cancer: the play’s the thing. J Natl Cancer Inst., 2005, 97, 1488-1489.
[389] Peng, Q.; Warloe, T.; Moan J, et al. Antitumor effect of 5-aminolevulinic acidmediated
[390] photodynamic therapy can be enhanced by the use of a low dose of photofrin in human
[391] tumor xenografts. Cancer Res., 2001, 61, 5824-5832.
[392] Fink, C.; Enk, A.; Gholam, P. Photodynamic therapy-Aspects of pain management.
[393] J. Dtsch Dermatol. Ges., 2015, 13, 15–22.
[394] Yano, T.; Muto, M.; Minashi, K.; Iwasaki, J.; Kojima, T.; Fuse, N.; Doi, T.; Kaneko,
[395] K.; Ohtsu, A. Photodynamictherapy as salvage treatment for local failure after
[396] chemoradiotherapy in patients with esophageal squamous cell carcinoma: A phase II
[397] study. Int. J. Cancer, 2012, 131, 1228–1234.
[398] Yano, T.; Muto, M.; Yoshimura, K.; Niimi, M.; Ezoe, Y.; Yoda, Y.; Yamamoto, Y.;
[399] Nishisaki, H.; Higashino, K.; Iishi, H. Phase I study of photodynamic therapy using
[400] talaporfin sodium and diode laser for local failure after chemoradiotherapy for
[401] esophageal cancer. Radiat. Oncol., 2012.
[402] De Visscher, S.A.; Melchers, L.J.; Dijkstra, P.U.; Karakullukcu, B.; Tan, I.B.; Hopper,
[403] C.; Roodenburg, J.L.; Witjes, M.J. mTHPC-mediated photodynamic therapy of early
[404] stage oral squamous cell carcinoma: A comparison to surgical treatment. Ann. Surg.
[405] Oncol., 2013, 20, 3076–3082.
[406] Castano,A.P.; Demidova, T.N.;Hamblin,M.R.Mechanisms in photodynamic therapy:
[407] Part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and
[408] modes of tumor destruction. Photodiagn. Photodyn. Ther. 2005, 2, 91-106.
[409] Vaupel, P.; Thews, O.; Hoeckel, M. Treatment resistance of solid tumors: Role of
[410] hypoxia and anemia. Med. Oncol., 2001, 18, 243–259.
[411] Casas, A.; Di Venosa, G.; Hasan, T.; Al, B. Mechanisms of resistance to photodynamic
[412] therapy. Curr. Med. Chem., 2011, 18, 2486–2515.
[413] Lovell, J.F.; Liu, T.W.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging
[414] and therapy. Chem. Rev., 2010, 110, 2839–2857.
[415] Guo, M.; Mao, H.; Li, Y.; Zhu, A.; He, H.; Yang, H.; Wang, Y.; Tian, X.; Ge, C.; Peng,
[416] Q.; Dual imaging-guided photothermal/photodynamic therapy using micelles
[417] Biomaterials, 2014, 35, 4656-4666.
[418] Taratula, O.; Patel, M.; Schumann, C.; Naleway, M.A.; Pang, A.J.; He, H.; Taratula, O.
[419] Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial
[420] phototherapy. Int. J. Nanomed., 2015, 10, 2347–2362.
[421] Lv, R.; Yang, P.; He, F.; Gai, S.; Li, C.; Dai, Y.; Yang, G.; Lin, J. A yolk-like
[422] multifunctional platform for multimodal imaging and synergistic therapy triggered by a
[423] single near-infrared light. ACS Nano, 2015, 9,1630–1647.
[424] Li, Y.; Lin, T.Y.; Luo, Y.; Liu, Q.; Xiao, W.; Guo, W.; Lac, D.; Zhang, H.; Feng, C.;
[425] Wachsmann-Hogiu, S.; et al. A smart and versatile theranostic nanomedicine platform
[426] based on nanoporphyrin. Nat. Commun. 2014.
[427] Master, A.; Livingston, M.; Sen Gupta, A. Photodynamic nanomedicine in the
[428] treatment of solid tumors:Perspectives and challenges. J. Control Release 2013, 168,
[429] -102.
[430] Gollnick, S.O.; Brackett, C.M. Enhancement of anti-tumor immunity by photodynamic
[431] therapy. Immunol. Res., 2010, 46, 216-226.
[432] Mroz, P.; Szokalska, A.; Wu, M.X.; Hamblin, M.R. Photodynamic therapy of tumors
[433] can lead to development of systemic antigen-specific immune response. PLoS ONE
[434] , 5, e15194.
[435] Anzengruber, F.; Avci, P.; de Freitas, L.F.; Hamblin, M.R. T-cell mediated anti-tumor
[436] immunity after photodynamic therapy: Why does it not always work and how can we
[437] improve it? Photochem. Photobiol. Sci., 2015, 14, 1492–1509.
[438] Mroz, P.; Hashmi, J.T.; Huang, Y.Y.; Lange, N.; Hamblin, M.R. Stimulation of anti-
[439] tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 2011, 7, 75-91.
[440] St Denis, T.G.; Aziz, K.; Waheed, A.A.; Huang, Y.Y.; Sharma, S.K.; Mroz, P.;
[441] Hamblin, M.R. Combination approaches to potentiate immune response after
[442] photodynamic therapy for cancer. Photochem. Photobiol. Sci., 2011, 10, 792-801.
[443] Xia, Y.; Gupta, G.K.; Castano, A.P.; Mroz, P.; Avci, P.; Hamblin, M.R. Cpg
[444] oligodeoxynucleotide as immune adjuvant enhances photodynamic therapy response in
[445] murine metastatic breast cancer. J. Biophotonics, 2014, 7, 897-905.
[446] Igney, F.H.; Krammer, P.H. Immune escape of tumors: Apoptosis resistance and tumor
[447] counterattack. J. Leukoc. Biol., 2002, 71, 907-920.
[448] Mroz, P.; Vatansever, F.; Muchowicz, A.; Hamblin, M.R. Photodynamic therapy of
[449] murine mastocytoma induces specific immune responses against the cancer/testis
[450] antigen P1A. Cancer Res. 2013, 73, 6462-6470.
[451] Korbelik, M. Cancer vaccines generated by photodynamic therapy. Photochem.
[452] Photobiol. Sci. 2011, 10, 664-669.
[453] Gollnick, S.O.; Vaughan, L.; Henderson, B.W. Generation of effective antitumor
[454] vaccines using photodynamic therapy. Cancer Res., 2002, 62, 1604-1608.
[455] Zheng, Y.; Yin, G.; Le, V.; Zhang, A.; Chen, S.; Liang, X.; Liu, J. Photodynamic-
[456] therapy activates immune response by disrupting immunity homeostasis of tumor cells,
[457] which generates vaccine for cancer therapy. Int. J. Biol. Sci., 2016, 12, 120-132.
[458] Korbelik, M.; Sun, J. Photodynamic therapy-generated vaccine for cancer therapy.
[459] Cancer Immunol. Immunother., 2006, 55, 900-909.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.