Arc Stability Characterization of Double Coated Electrodes for Hardfacing

Authors

  • Odonel González-Cabrera Villa Clara Information and Technological Management Center. Marta Abreu #55 entre Zayas y Villuendas. Santa Clara. Villa Clara
  • Carlos R. Gómez-Pérez WeldingResearch Center. Central University “Marta Abreu” of Las Villas. Carretera a Camajuaní, km 5 ½. Santa Clara. Villa Clara
  • Héctor A. Kairús-Hernández-Díaz Electrical Engineering. Central University “Marta Abreu” of Las Villas. Carretera a Camajuaní, km 5 ½. Santa Clara. Villa Clara
  • Félix A. Díaz-Rosell Physics, Mathematics and Computing. Central University “Marta Abreu” of Las Villas. Carretera a Camajuaní, km 5 ½. Santa Clara. Villa Clara

DOI:

https://doi.org/10.30564/jmer.v4i1.2890

Abstract

The aim of this work is to establish the influence of the relative position of the alloy charge C-Cr-Mn in the structure of the coating of rutile electrodes for hardfacing, on the operational behavior (arc stability). For this, three variants of electrodes with similar chemical composition are elaborated in the metallic core and the coating, differentiating only in the relative position that occupies the alloy charge (C-Cr-Mn) in the structure of the coating: internal, external and homogeneous. For the development of the research, a completely random design is used. The operative characterization of the electrodes is performed in terms of the arc stability. In conclusion, it can be seen that the position of the alloy load influences the operation behavior (stability of the arc). The variant of internal alloy charge in the coating presents the better arc stability performance.

Keywords:

Arc stability, Welding electrode, Hardfacing, Position of alloy charge

References

[1] Surian, E.S., Consumibles para soldadura por arco eléctrico: algunos desarrollos recientes. Soldag. Insp. São Paulo, 2013. 18(01): p. 077-089.

[2] De Rissone, N.M.R., et al., ANSI/AWS A5.1- 91 E6013 rutile electrodes: The effect of calcite. Welding Journal, 2002. Supplement p. 112-124.

[3] Yunus, M., M.S. Alsoufi, and M. Irfan, APPLICATION OF QC TOOLS FOR CONTINUOUS IMPROVEMENT IN AN EXPENSIVE SEAT HARDFACING PROCESS USING TIG WELDING. International Journal for Quality Research, 2016. 10(3).

[4] Colectivo de autores, Estudio comparativo de los parámetros de consumo y geometría de los depósitos de electrodos tubulares revestidos para recargue, Universidad Central ¨Marta Abreu¨ de Las Villas, Cuba. Universidad Federal de Uberlândia, Brasil. 2007.

[5] Pérez-Cepeda, J., La influencia de la microestructura en el comportamiento al desgaste abrasivo evaluado bajo norma astm g 65 de depósitos de soldadura antidesgaste aplicados sobre sustratos de acero de baja aleación y bajo carbono. Tesis Magister en Ingeniería, in Facultad de Ingeniería, Departamento de Ingeniería Mecánica y Mecatrónica. 2011, Universidad Nacional de Colombia: Bogotá D.C p 109.

[6] Herrera-Artiles, A., Sistema alambre - fundente para la recuperación de árboles cigüeñales y otras piezas tipo eje mediante soldadura por arco sumergido. Tesis doctoral. Facultad de Ingenieria Mecánica. Universidad Central de las Villas. Santa Clara. 2006.

[7] Yildizli, K., M. Eroglu, and M.B. Karamis, Erosive Wear Behaviour of Hardfacing Austenitic Manganese Deposit Tribology in industry, 2005. 27(3&4): p. 15- 21.

[8] Rude, A. and M.D. Pimpalgaonkar, Optimization Of Process Parameter In Hardfacing By Shield Metal Arc Welding (SMAW). International Research Journal of Engineering and Techonology, 2018. 5(8): p. 232-236.

[9] Walh, W. Trend to hardfacing. Stuttgart. Consultado 15/10/2015. Disponible en: http://www.engineers. org.il/_Uploads/1638drwahl0206.pdf.

[10] Bracarense, A.Q. and S. Liu, Chemical composition variations in shield metal arc welding. Welding journal, 1993. Welding research supplement(72): p. 529- 535.

[11] Hardfacing. Welding consumables. Afrox product reference manual. Consultado 09/10/2015. Disponible en: http://www.afrox.co.za/en/ legacy/attachment?files=tcm:g266-154582,tcm:266-154582,tcm:66-154582. p. 63.

[12] Cruz-Crespo, A., R.F. Fuentes, and A. Scotti, The influence of calcite, fluorite, and rutile on the fusion-related behavior of metal cored coated electrodes for hardfacing. Journal of Materials Engineering and Performance, 2010. 19(5): p. 685-692.

[13] Linnert, G.E., Welding Metallurgy, Vol. 1,American Welding Society, Miami, FL 1994(Chapter 9, p. 820).

[14] Livshits, L.C. and A.H. Jakimov, Ciencia de los metales para soldadura y tratamiento térmico de las uniones soldadas (En ruso), ed. Mashinostraenie. 1989, Moscu. p. 336.

[15] González Cabrera, O., C.R. Gómez Pérez, and U.B. Del Pino Paz, Methodology for the Selection of the Best Variant Between Double Coated Electrodes for Hardfacing. TecnoLógicas, 2020. 23(49): p. 53-62.

[16] García-Rodríguez, A., Evaluación de la estabilidad eléctrica específica de electrodos revestidos. Tesis doctoral. Centro de Investigaciones de Soldadura. Universidad Central "Marta Abreu" de Las Villas2010. p. 159.

[17] Queiroz Bracarense, A., et al., Desarrollo de electrodos tubulares revestidos para la soldadura subacuática mojada. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 2009. 32(2): p. 89-97.

[18] González-Cabrera, O., Gómez-Pérez, Carlos-René; Quintana-Puchol, Rafael; Perdomo-González, Lorenzo; Miguel-Oria, Jorge-Víctor; López-Fontanills, Roney-Lázaro., Alternativa de doble recubrimiento para electrodo destinado al proceso de relleno manual con arco eléctrico. Rev. Ingeniería Mecánica, 2014. 17(3): p. 245-254.

[19] Repair and maintenance Welding handbook, in Repair and maintenance consumables. 2013, ESAB AB: Goteborg SWEDEN. p. 130.

[20] Pokhodnya, I.K., et al., Metallurgy of arc welding. Riecansky Science Publishing CO. London. p. 246. 1995.

[21] The Welding Handbook. Edition 11 Revision 0, ed. W.M. Services. 2015, Lysaker, Norway. p. 556. Edition 11 Revision 0, ed. W.M. Services. 2015.

[22] Marchenko, A.E., N.V. Skorina, and V.P. Kostyuchenko, State of the art of development and manufacture of low hydrogen electrodes whit double-layer coating in the CIS countries. The Paton Welding journal. PWI, International Association «Welding», 2011. 01: p. 41-44.

[23] Baach, H., (1980) Possibilities of new achievements to effect the welding-technological properties of coated electrodes. In:Proc. of Symposium on Welding Industry (Oerlikon, Switzerland). Kiev, 1-10.

[24] Díaz-Rosell, F.A., Diseño Estadístico de Experimentos. Tesis de grado, in Facultad Matemática, Física y Computación. 2006, Universidad Central “Marta Abreu” de Las Villas: Santa Clara.

[25] Diseño de Experimentos (DDE) – Diseños de un Solo Factor Categórico. Diseño Completamente al Azar (DCA) STATGRAPHICS© 2006. por StatPoint, Inc. Consultado: 9/14/2014. Disponible en: http:// www.statgraphics.net/wp-content/uploads/2011/12/ tutoriales/DDE%20-%20Disenos%20de%20un%20 Solo%20Factor%20Categorico.pdf.

[26] STATPOINT, I., Manual de usuario. STATGRAPHICS® Centurion XV. 2006.

[27] Oppenheim AV, Schafer RW. Discrete- time signal processing. Prentice- Hall; 1989. p. 870.

[28] Vornovitsky, I.N., et al., Technological peculiarities of high-alloy steel welding by electrodes with rutile coating. Paton Welding journal, 2005. 2: p. 46-47.

[29] Egerland, S., A contribution to arc length discussion. Soldagem & Inspeção, 2015. 20(3): p. 367-380.

[30] French, I.E., Effects of electrode extension on deposit characteristics and metal transfer of E70T-4 electrodes Supplement To The Welding Journal, 1984. June: p. 167-172.

[31] Makarenko, V.D. and C.P. Shatilo, Stability of arcing in welding with calcium fluoride electrodes. Welding International, 1990. 4(12): p. 988-989.

Downloads

Issue

Article Type

Articles