Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration
Article ID: 3831
Abstract
Keywords
Full Text:
PDFReferences
[1] S. Iijima // Nature 354 (6348) (1991) 56.
[2] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda // Carbon 34 (1996) 279.
[3] F. Scarpa, S. Adhikari, A. Srikantha Phani // Nanotechnology 20(6) (2009) 065709.
[4] K. Tanaka, H. Aoki, H. Ago, T. Yamabe, K. Okahara // Carbon 35 (1997) 121.
[5] M. Kim, H.S. An, W.-J. Lee, J. Jung // Electronic Materials Letters 9(4) (2013) 517.
[6] M. Mazar Atabaki, R. Kovacevic // Electronic Materials Letters 9(2) (2013) 133.
[7] W.G. Lee, E. Kim, J. Jung // Electronic Materials Letters 8(6) (2012) 609.
[8] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer // The Journal of Physical Chemistry B 108(52) (2004) 19912.
[9] J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen // Science 315 (2007) 490.
[10] S.S. Gupta, R.C. Batra, Journal of Computational and Theoretical Nanoscience 7 (10) (2010) 2151-2164.
[11] S. Timoshenko, Theory of Plates and Shells, McGraw-Hill, Inc, London, 1940.
[12] Balandin AA, Ghosh S, Bao W, Calizon I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity og single-layer graphene. Nano Lett 2008;8(3):902-7.
[13] Zhu Y, Murali S, Cai W, Li , Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and application. Adc Mater 2010;22(35):3906-24.
[14] Jena, Subrat & Chakraverty, S.. (2019). Dynamic Analysis of Single-Layered Graphene Nano-Ribbons (SLGNRs) with Variable Cross-Section Resting on Elastic Foundation. Curved and Layered Structures. 6. 132-145. 10.1515/cls-2019-0011.
[15] Ren Wei Jiang, Zhi Bin Shen, Guo Jin Tang, Vibration analysis of a single-layered graphene sheetbased mass sensor using the Galerkin strip distributed transfer function method, 2016.
[16] A. Sakhaee-Pour, M.T. Ahmadian, A. Vafai // Solid State Communications 145 (2008) 168.
[17] Laura, P.A.A.; Pombo, J. L.; Susemihl, E.A. A note on the vibration of a clamped free beam with a mass at the free end. J. Sound Vib. 1974, 37, 161-168.
[18] Natsuki, Toshiaki. (2015). Theoretical Analysis of Vibration Frequency of Graphene Sheets Used as Nanomechanical Mass Sensor. Electronics. 4. 723- 738. 10.3390/electronics4040723.
[19] Samaei, A.T. & Aliha, M.R.M. & Mirsayar, M.M.. (2015). Frequency analysis of a graphene sheet embedded in an elastic medium with consideration of small scale. Materials Physics and Mechanics. 22. 125-135.
[20] Ekinci, K.L.; Huang, X.M.H.; Roukes, M.L. Ultrasensitive nanoelectromechanical mass detection.Appl. Phys. Lett. 2004, 84, 4469-4471.
[21] Geim, A.K. Graphene: status and prospects. Science 2009, 324, 1530-1534.
[22] Rakesh Prabhu T., Tarapada Roy, National Institute Of Technology ROURKELA,2010.Finite element modelling of multiwall carbon nanotube.
[23] Steven J. Koester ,Ultra-smooth Graphene Nanoribbon Formation Using Templated,Etching.
[24] Blevins, R. Formula for Natural Frequency and Mode Shape; Krieger; Hellerup, Denmark, 2001.
[25] Belvins, R.D. (1984) Formulas for natural frequency and mode shape. R.E. Krieger.
[26] Rakesh Prabhu T., Tarapada Roy, “Finite element modeling of multiwalled carbon nanotube”. National Institute of Technology Rourkela,2010.
[27] Zenkour, Ashraf. (2016). Vibration analysis of a single-layered graphene sheet embedded in visco-Pasternak’s medium using nonlocal elasticity theory. Journal of Vibroengineering. 18. 10.21595/ jve.2016.16585.
DOI: https://doi.org/10.30564/jmer.v4i2.3831
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.