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Cancer stem cells (CSCs) are a subpopulation of tumor cells with prop-
erties of self-renewal, pluripotency, plasticity, and differentiation, and 
are associated with various aberrantly stimulated signaling pathways. 
They are responsible for tumor recurrence, distant metastasis, and drug 
resistance, thus inducing poor prognosis. Immunotherapy has achieved 
encouraging results. However, the resistance associated with its clinical 
application is a persistent problem in clinical and scientific researches. 
Increasing evidence shows that signaling pathways associated with CSCs 
mediate immunotherapy resistance. This review highlights the link be-
tween them, and focuses on the underlying mechanism so as to provide 
potential strategies and approaches for the development of new targets 
against the immune resistance challenge.
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1. Introduction

Cancer is considered a heterogeneous disease due 
to the subsets of cells with distinct phenotypes 
and functions [1-3]. A small group of cancer cells 

with stem-like abilities are found in almost all untreated 
human malignancies. These cells are termed “cancer 
stem cells” (CSCs) based on their biological similari-
ties with normal stem cells found in the same tissue [1,4]. 
CSCs were first identified in acute myeloid leukemia 
(AML), and later were also found in numerous solid 

tumors, such as breast, thyroid, prostate, brain, lung, 
colon, melanoma, liver, and stomach cancers [5-15]. CSCs 
have characteristics of self‐renewal, differentiation, 
quiescence, and potential function to build their hetero-
geneity and induce cancer growth [16,17]. 

With the improved detection and treatment of cancer, 
some primary tumors can be completely cured after sur-
gery. However, patients with advanced, metastatic, and/
or recurrent tumors are in need of standard therapies, 
such as chemotherapy, radiotherapy, and molecular tar-
geted therapy. Mounting studies indicate that these ther-
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apies target the relatively differentiated and proliferating 
cancer cells. While these CSCs are mostly dormant and 
have been demonstrated to contribute to many clinical 
therapies, subsequently leading to tumor relapse, metas-
tasis recurrence, and poor prognosis [18,19]. The underlying 
mechanisms of resistance to therapies by CSCs are ex-
plained by the overexpression of anti-apoptotic proteins, 
augmented DNA-repair capacity, aberrantly stimulated 
signaling pathways, elevated anti-oxidant proteins, acti-
vated epithelial to mesenchymal transition (EMT) pro-
gram, and adapted metabolism under hypoxia conditions. 
In addition, the capability of CSCs to evade the immune 
system make it more difficult to overcome the therapy 
resistance [4, 20-24].

Recently, immunotherapy has emerged as a promis-
ing treatment for cancer patients and regained global 
attention [25]. Immune checkpoint inhibitors (ICIs) have 
been approved for the treatment of various aggressive 
cancers [26-30]. Despite the unprecedented favorable 
outcome observed with immunotherapies, the re-
sponse rates remain low, ranging from 15-40% vary-
ing from cancer types [31-33]. A majority of the patients 
do not benefit from the ICIs, mainly because tumors 
can escape immunosurveillance and elimination by 
avoiding the detection of the immune system or sup-
pressing immune responses. Like tumor cells, CSCs 
also have developed diverse strategies to escape the 
immune protection , including loss of tumor antigen 
expression, reduce of immune recognition via genetic 
or nongenetic alterations , enhancement of tolerance to 
immune cytotoxicity, and promotion of a immunosup-
pressive microenvironment [34]. Furthermore, previous 
studies have demonstrated that CSCs are associated 
with immunotherapy resistance in various cancer types 
[35,36]. However, the related signaling pathways remain 
poorly understood. Herein, we summarized the signal-
ing pathways of associated with CSCs with regard to 
their mechanistic regulation networks and their roles in 
immunotherapy resistance.

2. The Related Signaling Pathways of CSCs 
Implicated in Immunotherapy Resistance

Several cellular signaling pathways, such as Notch, Hedge-
hog (Hh), Transforming growth factor-beta (TGF-β), 
WNT/β-catenin, EGFR, NF-κB, HIF-1α, MAPK, PTEN/
PI3K, and JAK/STAT [37-39], have been described to play a 
vital role in the induction and maintenance of stemness in 
CSCs. Among these, TGF-β, WNT/β-catenin, Hippo, HIF-
1α, and Hh pathways are associated with immunotherapy 
resistance (Figure 1).

Figure 1. Signaling Pathways of Cancer Stem Cells in 
Resistance to Immunotherapy

Note: Collectively, TGF-β, WNT/β-catenin, Hippo, HIF-1α, and Hh 
pathways are associated with immunotherapy resistance.

2.1 TGF-β-responding CSCs Via CD80 Activation 
are Responsible for Immunotherapy Resistance

TGF-β signaling plays a dominant role in mediating EMT 
in CSCs [40-43]. It becomes phosphorylated upon binding 
to the TGF-β receptor. Subsequently, SMAD2/SMAD3 
is activated and composes into a complex with SMAD4. 
This complex translocates to the nucleus as a transcription 
factor, leading to the expression of target genes implicated 
in stemness and invasion property of cancer cells [44]. The 
TGF-β signal can also remodel the tumor microenviron-
ment (TME) by inhibiting T cell differentiation and activi-
ty, thus resulting in poor prognosis [45,46]. 

Two studies have identified the TGF-β signaling is a 
determining factor of T cell rejection and poor response to 
ICIs [45,47]. Furthermore, in mouse models, promising pre-
clinical evidence showed that the combination of TGF-β 
inhibitors and ICIs can facilitate T cell infiltration into the 
tumor center, extensively promoting anti-tumor immunity 
[48]. A similar model was designed for squamous cell carci-
noma. It revealed that the CSCs equipped with the surface 
CD80 not only have the power to resist immunotherapy 
by stimulating direct dampening of cytotoxic T lympho-
cyte (CTL) activity but also accelerate tumor growth. In 
contrast, the loss of CD80 can restore CTL proliferation 
to a greater extent than ICIs, making CSCs vulnerable and 
diminishing the immune-related tumor relapse. This is be-
cause CD80 is only activated in TGF-β-responding CSCs, 
and its expression could be influenced by TGF-β signaling. 
The single-cell RNA sequencing (RNA-seq) of TGF-β-re-
sponding CSCs shows that they are superior at resisting 
CTL responses and constitute the root of tumor recurrence 
[49]. The role of TGF-β responding CSCs in assisting cancer 
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immune escapes has also been demonstrated in bladder and 
colon cancer after conventional PD-L1 immunotherapy 
[47,48,50]. These results indicate that the combination of TGF-β 
inhibitors and ICIs might be effective in targeting the CSCs 
to overcome immunotherapy resistance. 

2.2 Tumor-intrinsic Active WNT/β-catenin Signal-
ing Results in T-cell Exclusion

WNT signaling plays a substantial role in keeping CSCs in 
a undifferentiated and self‐renewal state; therefore, the ac-
tivated WNT signaling is associated with cancer occurrence 
[16]. In colon cancer, WNT/β‐catenin can be activated by 
protein‐4 (AP4), thereby increasing the number of CSCs 
and modulating their homeostasis [51]. In lung cancer, β‐
catenin signaling contributes to the maintenance of CSC 
phenotype, and stemness [52,53]. The activation of WNT sig-
naling via the hepatocyte growth factor (HGF) promotes 
the transition of cancer cells into CSCs [54, 55]. 

The role of WNT signaling in immune escape has re-
cently been discovered. The molecular analysis of human 
metastatic melanoma samples shows that the activated 
WNT signaling is correlated with T-cell exclusion [56]. 
Similarly, β-catenin appears to inhibit CTL activation 

[57]. Mechanistically, previous reports have indicated that 
CCL4 can induce T-cell infiltration [58,59]. Meanwhile, the 
WNT/β-catenin signaling suppressed the CCL4 gene ex-
pression via ATF3-dependent transcriptional expression, 
resulting in immune evasion [60]. In a melanoma mouse 
model with constitutively high β-catenin activity, the 
failure of T-cell initiation against tumor antigens is 
mainly attributed to the decreased infiltration of CD103+ 

dendritic cells [61]. The restoration of dendritic cell re-
cruitment into the tumor via injection can enhance an-
ti-PD-L1/CTLA4 therapy. Moreover, the upregulation 
of IL-12 by β-catenin signaling can also modulate and 
impair the dendritic cell function [60]. Similarly, in colon 
cancer, the inhibition of β-catenin activity of increases 
CD8+ T cells and CD103+ levels in tumor area. β-catenin 
signal may mediate immunotherapy resistance of colon 
cancer [62]. Collectively, the manipulation of Wnt/β-cat-
enin signaling pathway combined with ICIs might rep-
resent a novel therapy for cancer, further studies inves-
tigating the interaction between tumor intrinsic WNT/
β-catenin signaling and immunotherapy are expected.

2.3 STAT3 Signaling-mediated IL-8 Derived 
from Gastric Cancer Mesenchymal Stem Cells 
(GCMSCs) Increases PD-L1 Expression to Resist 
CD8+T Cell Cytotoxicity

Signal transducers and activators of transcription (STAT) 

factors and  the receptor-associated JAK kinases, are the 
downstream effectors of both extrinsic and intrinsic sig-
nals [63,64]. Tyrosine-phosphorylated (YP)-STATs compose 
into an active dimer and control target genes expression 
in the nucleus [65]. Excessive activation of STAT3 was 
reported to play many roles in cancer cells, including the 
promotion of cancer cell survival, proliferation and tumor 
angiogenesis, down-modulation of anti-tumor immune re-
sponses, enhancement of tumor recurrence and metastasis 
by inducing EMT, and increasing the number of CSCs. 
Finally, STAT3 activity can induce CSC features in solid 
tumors [66-68]. Therefore, STAT3 is regarded as an oncogene 
and a target for anti-cancer treatments

The activation of STAT3 signal is involved in the mod-
ulation of PD-L1 expression [69,70]. IL-8 derived from the 
GCMSCs induces PD-L1 expression in gastric cancer 
(GC) cells [71]. In contrast, IL-8 inhibition weakened the 
protective effects of GCMSCs on GC cells against CD8+ 
T cell cytotoxicity. The inhibition of IL-8 derived from 
GCMSCs may suggest a potential strategy to sensitize 
PD-L1 antibody therapy in GC. In addition, the combina-
tive blockade of multiple cytokines with ICIs in the future 
may have the potential to overcome the immunotherapy 
resistance induced by the high expression of PD-L1. Fur-
thermore, CD44+ cells are also found to have an EMT 
property and are less immunogenic. CD44+ cells were ob-
served to have a high inducible expression of PD-L1 and 
associated with the phosphorylation of STAT3. Therefore, 
CD44+ cells are characterized with drug immunotherapy 
resistance. Inhibition of STAT3 could decrease the expres-
sion of PD-L1 on CD44+ cells and selectively enhance 
the immune responses [72]. Interestingly, subsets of CSCs 
with an EMT phenotype are low immunogenicity due to 
elevated PD-L1 expression, driven by the constitutive 
phosphorylation of STAT3 [72,73]. Considering these evi-
dences, STAT3 expression may decrease the therapeutic 
efficacy of ICIs, and the combination of immunotherapy 
with STAT3 inhibitors may be a promising strategy to 
effectively suppress malignant tumors. Further investiga-
tion of the specific function of STAT3-regulated PD-L1 
expression on the surface of cancer cell and CD44+ cells 
will be required to fully understand the intriguing link be-
tween immune escape and signaling pathways associated 
with CSCs.

2.4 HIF Signaling Drives the Expression of PD-L1 
and Induces the Immunosuppressive Tumor Mi-
croenvironment

Hypoxia is one of the most common features of the 
TME driving the aggressiveness of tumors [74]. Hypoxic 
remodeling is mostly regulated by hypoxia-inducible 
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factors (HIFs) [75]. Three HIF-α family proteins are de-
scribed in humans: HIF-1α, -2α, and -3α. Among these, 
HIF-1α expression up-regulation is well understood and 
found in many tumors, such as prostate cancer, breast 
cancer, colon cancer, and hemangioblastoma [76]. Activat-
ed HIF pathway can initiate genes associated with vascu-
logenesis, drug resistance, glucose metabolism, immune 
escape, and metastasis [75,77], resulting in the reduced 
overall survival of patients in various cancers [75]. Con-
sistently, the inhibition of HIF-1α can reduce the CSC 
numbers and suppress drug resistance in various cancer 
types, such as glioma, hematological cancers, and breast 
cancer [78-80]. 

EMT is widely known to induce stem-like properties in 
cancer cells [81]. The HIF-1 signaling pathway is crucial for 
the modulation and maintenance of CSCs and the EMT 
phenotype [82]. In thyroid and prostate cancer, HIF-1α-me-
diated EMT can increase stem-like cells [83,84]. In tumor tis-
sues, the hypoxic or necrotic area of is considered a niche 
of CSCs. HIF-1 regulates CSC-signature genes, such as 
CD44, CD133, OCT4, SOX-2, NANOG, and MYC, that 
are increased in the CSCs of this niche. In pancreatic can-
cer, gastric cancer, and neuroblastoma, the discontinuous 
hypoxia upregulates HIF-1α, enhancing stem-like char-
acteristics of theses cancer cells [85-87]. HIF-1 also plays an 
important role in promoting mammary tumor growth and 
metastasis by direct regulation of CSCs [87]. These studies 
highlight the vital role of HIF-1 in accelerating tumori-
genesis, metastasis, and drug resistance because of CSC 
sustenance. 

HIF-1α has been demonstrated to regulate PD-L1 ex-
pression on both tumor cells and myeloid-derived suppres-
sor cells (MDSCs), leading to immune evasion [88]. HIF-1α 
also increases the secretion of vascular endothelial growth 
factor A (VEGEFA), thus promoting the recruitment of 
MDSCs and Tregs to the TME [89]. Furthermore, HIF-1α 
promotes the shedding of NKG2D ligands, causing tumor 
immune evasion from natural killer cells [90]. Owing to the 
complex regulatory network of HIF-1, designing specific 
and ideal inhibitors remains a challenge. Although several 
HIF-1α inhibitors have been studied and reported, so far 
none of them has been approved for clinical use [91]. De-
spite the incomplete success of direct HIF-1α antagonists, 
several other drugs, such as heat shock protein 90 (HSP90) 
inhibitors, are shown to have the potential to indirectly 
inhibit HIF-1α [92]. Anthracycline agents, including doxo-
rubicin and daunorubicin can inhibit HIF-1α by suppress-
ing the binding of HIF-1α to DNA [93]. Overall, given the 
role of HIF-1α in the immunosuppressive TME, HIF-1α 
inhibitors may hold promise for improving the efficiency 
of combined immunotherapy.

2.5 Hedgehog Signaling Regulates the PD-L1 Ex-
pression under Hypoxic Conditions

Hh is a conserved signaling pathway in the development 
of intercellular communication. Three ligands, including 
Sonic hedgehog (SHH), Indian hedgehog (IHH), and Des-
ert hedgehog (DHH) can activate Hh signaling [94]. The 
primary receptor for these ligands is Patched-1 (Ptch1). 
Without the ligand, Ptch1 suppresses smoothened (Smo), 
but upon the binding of ligand, Ptch1 inhibition is released 
and Smo is activated. Subsequently, Smo stimulates the 
glioma-associated oncogene (Gli) transcription factors 
Gli1, Gli2, and Gli3 [95]. Gli1 activates the target genes 
related to tumorigenesis as well as angiogenesis factor 
genes [96].

Hh signaling is aberrant in various types of cancers and 
contributes to cancer initiation, proliferation, progression, 
and invasion [97]. In pancreatic CSCs, SHH and other HH 
signaling components are expressed more than in normal 
pancreatic stem cells or pancreatic ductal epithelial cells 
[98]. In addition, Gli-independent Hedgehog signaling is 
observed in CSCs-enriched cancer and required for CSC 
survival. Thus, the dysfunction of HH signaling is consid-
ered one of the key events in CSCs origin.

Previous researches have demonstrated that Hh sig-
naling promotes cell cycle-dependent tumor growth and 
invasion by improving the metalloproteinase expression 
[99,100]. Therefore, hedgehog inhibitors (HHIs) are used 
for therapy. However, HHIs do not meet the anticipated 
outcome. To clarify the cause, HH signaling itself should 
be considered, it is complex and plays a role not only in 
tumor development but also drug resistance. Of these, the 
mutation of signaling components is responsible for the 
non-effectiveness of HHIs. Interestingly, recent studies 
show that Hh signaling may modulate PD-L1 expression 
under hypoxic conditions. Additionally, Hh inactivation 
and/or the blockade of PD-L1 increases the anti-tumor 
activity of lymphocytes [101]. These results indicate that 
the action of Hh signaling may contribute to the ICIs re-
sistance via PD-L1 expression and inhibition of the lym-
phocyte anti-tumor activity. The combination of ICIs and 
new generation HHIs in the future may shed insights into 
overcoming the development of resistance.

3. Summary

The different signaling pathways associated with CSCs 
may play a vital role in the immune resistance. The specif-
ic mechanisms inducing the immune resistance include—
the recruitment of immunosuppressive cells, especially 
MDSCs and Treg cells, to the TME; enhancement of CSC 
properties, especially the EMT; the regulation of PD-L1 
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expression on the tumor or CSC surface to inhibit CD8+ 
T cell cytotoxicity and even the direct loss of CD8+ T 
cells (Figure 2). Of note, hypoxia can directly induce PD-
L1 expression in cancer cells; meanwhile, HIF-1α and 
HH signaling can be directly activated by hypoxia, thus 
contributing to the immune resistance. Moreover, these 
possible mechanisms may function together as a network 
rather than in isolation. However, to tackle the problem of 
immune resistance, considerable research efforts are need-
ed to gain an accurate understanding of the underlying 
mechanisms.

Figure 2. The Schematic Diagram for Signaling Pathways 
Associated with Cancer Stem Cells in Immunotherapy 

Resistance
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