Stromal and Tumor Glioma-Derived Cells with Similar Characteristics have Differences in α-Smooth Muscle Actin Expression and Localization

Authors

  • I. Gin Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
  • I. Chistyakova Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
  • V. Zenin Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
  • S. Koshkin Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
  • A. Musorina Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
  • Y. Lahina Almazov National Medical Research Centre, St. Petersburg, 197341, Russia
  • G. Timin Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, 195251, Russia
  • V. Pospelov Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
  • S. Prikhodko Almazov National Medical Research Centre, St. Petersburg, 197341, Russia
  • A. Petukhov Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia; Almazov National Medical Research Centre, St. Petersburg, 197341, Russia; Scientific Technological University «Sirius», Sochi, 354340, Russia
  • E. Tolkunova Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia

DOI:

https://doi.org/10.30564/jor.v3i2.3566

Abstract

Gliomas are solid brain tumors composed of tumor cells and recruited heterogenic stromal components. The study of the interactions between the perivascular niche and its surrounding cells is of great value in unraveling mechanisms of drug resistance in malignant gliomas. In this study, we isolated the stromal diploid cell population from oligodendroglioma and a mixed population of tumor aneuploid and stromal diploid cells from astrocytoma specimens. The stromal cells expressed neural stem/progenitor and mesenchymal markers showing the same discordant phenotype that is typical for glioma cells. Moreover, some of the stromal cells expressed CD133. For the first time, we demonstrated that this type of stromal cells had the typical myofibroblastic phenotype as the α-SMA+ cells formed α-SMA fibers and exhibited the specific function to deposit extracellular matrix (ECM) proteins at least in vitro. Immunofluorescent analysis showed diffuse or focal α-SMA staining in the cytoplasm of the astrocytoma-derived, A172, T98G, and U251MG glioma cells. We could suggest that α-SMA may be one of the main molecules, bearing protective functions. Possible mechanisms and consequences of α-SMA disruptions in gliomas are discussed.

Keywords:

Oligodendroglioma, Astrocytoma, Primary cell cultures, Tumor microenvironment, Myofibroblasts, Extracellular matrix

References

[1] Codrici E, Enciu AM, Popescu ID, Mihai S, Tanase C. Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int., 2016, 2016: 5728438. DOI: 10.1155/2016/5728438.

[2] Clavreul A., Menei P. Mesenchymal Stromal-Like Cells in the Glioma Microenvironment: What Are These Cells? Cancers (Basel), 2020, 12(9): 2628. DOI: 10.3390/cancers12092628.

[3] LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech., 2018, 11(4): dmm029447. DOI: 10.1242/dmm.029447.

[4] Svensson A., Ramos-Moreno T., Eberstål S., Scheding S., Bengzon J. Identification of two distinct mesenchymal stromal cell populations in human malignant glioma. J Neurooncol., 2017, 131(2): 245 -254. DOI: 10.1007/s11060-016-2302-y.

[5] Modrek AS, Bayin NS, Placantonakis DG. Brain stem cells as the cell of origin in glioma. World J Stem Cells, 2014, 6(1): 43 -52. DOI: 10.4252/wjsc.v6.i1.43.

[6] Ogden AT, Waziri AE, Lochhead RA, Fusco D et al. Identification of A2B5+CD133− Tumor-Initiating Cells in Adult Human Gliomas. Neurosurgery, 2008, 62: 505 -515. DOI: 10.1227/01.neu.0000316019.28421.95.

[7] Rebetz J, Tian D, Persson A, et al. Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-expression and neuronal lineage differentiation potential in high-grade glioma. PLoS One, 2008, 3(4): e1936. DOI:10.1371/journal.pone.0001936.

[8] Lindberg N, Kastemar M, Olofsson T et al. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene, 2009, 28(23): 2266 -2275. DOI: 10.1038/onc.2009.76.

[9] Bexell D, Gunnarsson S, Nordquist J and Bengzon J. Characterization of the subventricular zone neurogenic response to rat malignant brain tumors. Neuroscience, 2007, 147(3): 824-32. DOI: 10.1016/j.neuroscience.2007.04.058.

[10] Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A, 2000, 97923): 12846 -12851. DOI: 10.1073/pnas.97.23.12846.

[11] Najbauer J, Huszthy PC, Barish ME, et al. Cellular host responses to gliomas. PLoS One. 2012;7:e35150. DOI: 10.1371/journal.pone.0035150.

[12] Hambardzumyan D, Cheng YK, Haeno H, et al. The probable cell of origin of NF1- and PDGF-driven glioblastomas. PLoS One, 2011, 6(9): e24454. DOI: 10.1371/journal.pone.0024454.

[13] Fomchenko EI, Dougherty JD, Helmy KY, et al. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS One, 2011, 6(7): e20605. DOI: 10.1371/journal.pone.0020605.

[14] Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron, 2006, 51(2): 187 -99. DOI: 10.1016/j.neuron.2006.06.012.

[15] Assanah M, Lochhead R, Ogden A, et al. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci., 2006, 26(25): 6781-6790. DOI: 10.1523/JNEUROSCI.0514-06.2006.

[16] Talasila KM, Brekka N, Mangseth K, et al. Tumor versus stromal cells in culture--survival of the fittest? PLoS One, 2013, 8(12): e81183. DOI: 10.1371/journal.pone.0081183.

[17] Kalluri R. The biology and function of fibroblasts in cancer Nat Rev Cancer, 2016, 16(9): 582-98. DOI: 10.1038/nrc.2016.73.

[18] Yoo JE, Kim YJ, Rhee H, et al. Progressive Enrichment of Stemness Features and Tumor Stromal Alterations in Multistep Hepatocarcinogenesis. PLoS One, 2017, 12(1): e0170465. DOI: 10.1371/journal.pone.0170465.

[19] Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med., 2017, 214(3): 579 -596. DOI: 10.1084/jem.20162024.

[20] Holm Nielsen S, Willumsen N, Leeming DJ, et al. Serological Assessment of Activated Fibroblasts by alpha-Smooth Muscle Actin (α-SMA): A Noninvasive Biomarker of Activated Fibroblasts in Lung Disorders. Transl Oncol., 2019, 12(2): 368 -374. DOI: 10.1016/j.tranon.2018.11.004.

[21] Valcz G, Sipos F, Krenács T, et al. Increase of α-SMA(+) and CK (+) cells as an early sign of epithelial-mesenchymal transition during colorectal carcinogenesis. Pathol Oncol Res., 2012, 18(2): 371-6. DOI: 10.1007/s12253-011-9454-z.

[22] Emon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of Tumor Microenvironment and Cancer Metastasis - A Mini Review. Comput Struct Biotechnol J., 2018, 16: 279 -287. DOI: 10.1016/j.csbj.2018.07.003.

[23] Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A, 2010, 107(46): 20009 -20014. DOI: 10.1073/pnas.1013805107.

[24] Abd-el-Basset EM and Fedoroff S. Immunolocalization of the alpha isoform of smooth muscle actin in mouse astroglia in cultures. Neurosci Lett,. 1991, 125(2): 117-20. DOI: 10.1016/0304-3940(91)90005-e.

[25] Abd-El-Basset EM. The effect of dibutyryl cyclic AMP on the expression of actin isoforms in astroglia. Histochem J. 2000;32:581-90. DOI: 10.1023/a:1026738600838.

[26] Lecain E, Alliot F, Laine MC, Calas B and Pessac B: α Isoform of smooth muscle actin is expressed in astrocytes in vitro and in vivo. J Neurosci Res. 1991;28:601-6. DOI: 10.1002/jnr.490280417.

[27] Moreels M, Vandenabeele F, Dumont D, Robben J and Lambrichts I. Alpha-smooth muscle actin (α-SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: Potential regulatory role of transforming growth factor-beta 1 (TGF-β1). Neuropathol Appl Neurobiol. 2008;34:532-46. DOI: 10.1111/j.1365-2990.2007.00910.x.

[28] Frei K, Gramatzki D, Tritschler I, Schroeder JJ, Espinoza L, Rushing EJ, Weller M. Transforming growth factor-β pathway activity in glioblastoma. Oncotarget. 2015;6(8):5963-77. DOI: 10.18632/oncotarget.3467.PMID: 25849941.

[29] Pogoda K., Janmey P. A. Glial Tissue Mechanics and Mechanosensing by Glial Cells Front Cell Neurosci. 2018; 12: 25. DOI: 10.3389/fncel.2018.00025.

[30] Leavitt J, Gunning P, Kedes L, Jariwalla R. Smooth muscle alpha-action is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. Nature. 1985;316(6031):840-2.

[31] Kumar CC, Bushel P, Mohan-Peterson S, Ramirez F.Regulation of smooth muscle alpha-actin promoter in ras-transformed cells: usefulness for setting up reporter gene-based assay system for drug screening. Cancer Res. 1992;52(24):6877-84.

[32] Bushel P, Kim JH, Chang W, Catino JJ, Ruley HE, Kumar CC. Two serum response elements mediate transcriptional repression of human smooth muscle alpha-actin promoter in ras-transformed cells. Oncogene. 1995;10(7):1361-70.

[33] Okamoto-Inoue M, Kamada S, Kimura G, Taniguchi S. The induction of smooth muscle alpha actin in a transformed rat cell line suppresses malignant properties in vitro and in vivo. Cancer Lett. 1999;142(2):173-8.

[34] Fujisawa, H., Reis, R., Nakamura, M. et al. Loss of Heterozygosity on Chromosome 10 Is More Extensive in Primary (De Novo) Than in Secondary Glioblastomas. Lab Invest. 2000;80:65 -72. doi. org/10.1038/labinvest.3780009.

[35] Comer, K., Dennis, P., Armstrong, L. et al. Human smooth muscle α-actin gene is a transcriptional target of the p53 tumor suppressor protein. Oncogene. 1998;16:1299 -1308. https://doi.org/10.1038/ sj.onc.1201645.

[36] Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, et al. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells. 2010;28:788-98. DOI: 10.1002/stem.312.

[37] Klink B, Miletic H, Stieber D, et al. A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1. PLoS One. 2013;8:e59773.

[38] DOI: 10.1371/journal.pone.0059773.

[39] Adachi J, Ohbayashi K, Suzuki T and Sasaki T: Cell cycle arrest and astrocytic differentiation resulting from PTEN expression in glioma cells. J Neurosurg. 1999;91:822-30. DOI: 10.3171/jns.1999.91.5.0822.

[40] Fomproix N and Percipalle P. An actin-myosin complex on actively transcribing genes. Exp Cell Res. 2004 10;294:140-8. DOI: 10.1016/j.yexcr.2003.10.028.

[41] Vogel W, Grünebach F, Messam CA, Kanz L, et al. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica. 2003;88:126-33.

[42] Bourkoula E, Mangoni D, Ius T, et al.: Glioma-associated stem cells: A novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas. Stem Cells. 2014;32:1239-53. DOI: 10.1002/stem.1605.

[43] Bataller R, Paik YH, Lindquist JN, et al. Hepatitis C Virus Core and Nonstructural Proteins Induce Fibrogenic Effects in Hepatic Stellate Cells. Gastroenterology. 2004;126:529-40. DOI: 10.1053/j.gastro.2003.11.018.

[44] Hafner S, Harmon BG and King T. Gastrointestinal stromal tumors of the equine cecum. Vet Pathol. 2001 Mar;38:242-6. DOI: 10.1354/vp.38-2-242.

[45] Muravnick KB, Parente EJ and Del Piero F: An atypical equine gastrointestinal stromal tumor. J Vet Diagnostic Investig. 2001;38:689-97. DOI: 10.1354/vp.38-6-689.

[46] Ueyama H, Bruns G and Kanda N. Assignment of the vascular smooth muscle actin gene ACTSA to human chromosome 10. Jpn J Hum Genet. 1990;35:145-50. DOI: 10.1007/BF01876459.

[47] Maier D, Zhang Z, Taylor E, et al. Somatic deletion mapping on chromosome 10 and sequence analysis of PTEN/MMAC1 point to the 10q25-26 region as the primary target in low-grade and high-grade gliomas. Oncogene. 1998 ;16:3331-5. DOI: 10.1038/sj.onc.1201832.

[48] Weber RG, Sabel M, Reifenberger J, et al. Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene. 1996;13:983-94.

[49] Tohma Y, Gratas C, Biernat W, et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (denovo) but not in secondary glioblastomas. J Neuropathol Exp Neurol. 1998;57:684-9. DOI: 10.1097/00005072-199807000-00005.

[50] Hossain A, Gumin J, Gao F, et al. Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway. Stem Cells. 2015;33:2400 -2415. DOI: 10.1002/stem.2053.

[51] Konopka G, Bonni A. Signaling pathways regulating gliomagenesis. Curr Mol Med., 2003, 3(1): 73-84. DOI: 10.2174/1566524033361609.

[52] Guo DC, Papke CL, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84:617 -627. DOI: 10.1016/j.ajhg.2009.04.007.

[53] Posern G, Sotiropoulos A, Treisman R. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell. 2002;13(12):4167-78.

[54] Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol. 1999;1:44 -51. DOI: 10.1093/neuonc/1.1.44.

[55] Ichimura K, Schmidt EE, Miyakawa A, Goike HM and Collins VP. Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades. Genes Chromosom Cancer. 1998;22:9-15. DOI: 10.1002/(sici)1098-2264(199805)22:1<9::aid-gcc2>3.0.co;2-1.

[56] Chen L, DeWispelaere A, Dastvan F, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS One. 2016;11:e0155726. DOI: 10.1371/journal.pone.0155726.

[57] Rønnov-Jessen L and Petersen OW. A function for filamentous α-smooth muscle actin: Retardation of motility in fibroblasts. J Cell Biol. 1996;134:67-80. DOI: 10.1083/jcb.134.1.67.

[58] Sabari J, Lax D, Connors D, et al. Fibronectin matrix assembly suppresses dispersal of glioblastoma cells. PLoS One. 2011;6:e24810. DOI: 10.1371/journal.pone.0024810.

[59] Shannon S, Vaca C, Jia D, et al. Dexamethasone-Mediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary Human Glioblastoma Cells. PLoS One. 2015;10:e0135951. DOI: 10.1371/journal.pone.0135951.

[60] Papke CL, Cao J, Kwartler CS, et al. Smooth muscle hyperplasia due to loss of smooth muscle α-actin is driven by activation of focal adhesion kinase, altered p53 localization and increased levels of platelet-derived growth factor receptor-β. Hum Mol Genet. 2013;22:3123 -3137. DOI: 10.1093/hmg/ddt167.

[61] Zaromytidou AI, Miralles F, Treisman R. MAL and ternary complex factor use different mechanisms to contact a common surface on the serum response factor DNA-binding domain. Mol Cell Biol. 2006;26:4134 -4148. DOI: 10.1128/MCB.01902-05.

Downloads

How to Cite

Gin, I., Chistyakova, I., Zenin, V., Koshkin, S., Musorina, A., Lahina, Y., Timin, G., Pospelov, V., Prikhodko, S., Petukhov, A., & Tolkunova, E. (2021). Stromal and Tumor Glioma-Derived Cells with Similar Characteristics have Differences in α-Smooth Muscle Actin Expression and Localization. Journal of Oncology Research, 3(2), 8–21. https://doi.org/10.30564/jor.v3i2.3566

Issue

Article Type

Articles