Bio-fuel Production From Carbondioxide Gas Using S. elongatus PCC 7942 from Cyanobacteria

Delia Teresa Sponza (Dokuz Eylül University, Engineering Faculty, Environmental Engineering Department Buca-İzmir)
Cansu Doğanx (xAgean University, Science Faculty, Deparment of Biology, Sciences Institute)

Article ID: 1809

DOI: https://doi.org/10.30564/omms.v2i1.1809

Abstract


The scope of this study, is  1-butanol production from CO2 with S. elongatus PCC 7942 culture. The yields of 1-butanolproduced/CO2utilized have been calculated. The maximum concentration of produced 1- butanol is 35.37 mg/L and 1-butanolproduced/CO2utilized efficiency is 92.4. The optimum operational conditions were  30°C temperature, 60 W intensity of light, pH= 7.1, 120 mV redox potential, 0.083 m3/sn flow rate with CO2 and 0.5 mg/l dissolved O2 concentration. Among the enzymes on the metabolic trail of the production of 1-butanol via using S. elongatus PCC 7942 cyanobacteria. At maximum yield; the measured concentrations are 0.016 µg/ml for hbd; 0.0022 µg/ml for Ter and 0.0048 µg/ml for AdhE2. The cost analyses necessary for 1-butanol production has been done and the cost of 1 litre 1-butanol has been determined as maximum 1.31 TL/L.


Keywords


Bio-fuel;Carbondioxide Gas Using S. elongatus;Cyanobacteria

Full Text:

PDF

References


[1] Allakhverdiev, S.I., Nishiyama, Y., Suzuki, I., Tasaka, Y. ve Murata, N. (1999). Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of the National Academy of Sciences, 96, 5862–5867.

[2] Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y. ve Murata, N. (2000). Inactivation of photosystems I and II in response to osmotic stress in Synechococcus: contribution of water channels. Plant Physiolgy, 122, 1201–1208.

[3] Atsumi, S., Hanai, T. ve Liao, J.C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86–89.

[4] Boynton, Z.L., Bennet, G.N. ve Rudolph, F.B. (1996). Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. Journal of Bacteriolgy,178(11), 3015-3024.

[5] Bustos, S. A., Schaefer, M.R. ve Golden, S.S. (1990). Different and rapid responses of four cyanobacterial psbA transcripts to changes in light intensity. Journal of Bacteriolgy, 172(4), 1998–2004.

[6] Deng, M.D. ve Coleman, J.R. (1999). Ethanol synthesis by genetic engineering in cyanobacteria. Applied and Environmental Microbiology, 65, 523–528.

[7] Denhez, F. (2007). Küresel ısınma atlası. İstanbul; NTV yayınları.

[8] Dexter, J. ve Fu, P.C. (2009). Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science, 2, 857–864.

[9] Fu, F., Mark E., Zhang, Y., Feng, Y. ve Hutchins D.A. (2007). Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology, 443(3), 485-496.

[10] Hagemann, M. ve Erdmann, N. (1997). Environmental stresses. In: Rai AK, editor. cyanobacterial nitrogen metabolism and environmental biotechnology. Heidelberg: Springer-Verlag, 156–221.

[11] Hayashi, H. ve Murata, N. (1998). Genetically engineered enhancement of salt tolerance in higher plants. Elsevier Science, 133–148.

[12] Kuan, D., Duff, S., Posarac, D. Ve Bi, X. (2015). Growth optimization of Synechococcus elongatus PCC 7942 in lab flasks and 2-D photobioreactor. The Canadian Journal of Chemical Engineering, 93, 640-647.

[13] Lai, C., Dietrich, D. ve Bowman, M. (2005). Global warming and the mining of oceanic methane hydrate. Topics in Catalysis, 32(3-4), 95-99.

[14] Lan, E.I. ve Liao, J.C (2011). Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering, 13, 353-363.

[15] Lan, E.I. ve Liao, J.C. (2012). ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6018-23.

[16] Lindberg, P. Park, S. ve Melis, A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystisas the model organism. Metabolic Engineering, 12, 70–79.

[17] Murray, R., Badger, ve T. ve Andrews, J. (1982). Photosynthesis and inorganic carbon usage by the marine cyanobacterium. Synechococcus sp. Plant Physiology, 70(2), 517-523.

[18] Niederholtmeyer, H., Wolfstadter, B.T., Savage, D.F., Silver, P.A. ve Way, J.C. (2010). Engineering cyanobacteria to synthesize and export hydrophilic products. Applied and Environmental Microbiology, 76, 3462–3466.

[19] Papageorgiou, G.C., Alygizaki-Zorba, A., Ladas, N. ve Murata, N. (1998). A method to probe the cytoplasmic osmolality and osmotic water and solute fluxes across the cell membrane of cyanobacteria with Chl a fluorescence: experiments with Synechococcus sp. PCC 7942. Physiologia Plantarum, 103, 215–224.

[20] Parmar, A, Singh, N.K., Pandey, A., Gnansounou, E. ve Madamwar, D. (2011). Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource Technolgy, 102, 10163-10172.

[21] Pope, D. (1975). Effects of light intensity, oxygen concentration, and carbon dioxide concentration on photosynthesis in algae. Microbial Ecology, 2(1), 1-16.

[22] Raeesossadati, M.J., Ahmadzadeh, H., McHenry, M.P. ve Moheimani, N.R. (2014). CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6 (Part A), 78-85.

[23] Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. ve Stanier, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1-61.

[24]

[25] Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M. ve Liao, J.C. (2011). Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied Environmental Microbiolgy, 77,2905–2915.

[26] Takahama, K., Matsuoka, M., Nagahama, K. ve Ogawa, T. (2003). Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. Journal of Bioscience and Bioengineering, 95, 302–305.

[27] Tezcan A., Atılgan, A. ve Öz, H., (2011). Seralarda karbondioksit düzeyi, karbondioksit gübrelemesi ve olası etkileri. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 6 (1), 44-51.

[28] Tucci, S. ve Martin, W. (2007). A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola. FEBS Letters, 581(8), 1561-1566.

[29] Varlet, V., Smith, F., de Froidmont, S., Dominguez, A., Rinaldi, A., Augsburger, M. ve ark. (2013). Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography-mass spectrometry and stable labeled isotope as internal standard. Analytica Chimica Acta,784, 42-46.

[30] Yang, C.C., Wen, R.C., Shen, C.R. ve Yao D.J. (2015). Using a microfluidic gradient generator to characterize BG-11 medium for the growth of cyanobacteria Synechococcus elongatus PCC 7942. Micromachines, 6(11), 1755-1767.


Refbacks

  • There are currently no refbacks.
Copyright © 2020 Delia Teresa Sponza, Cansu Doğanx


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.