Incorporation of SCBA in Red Ceramics and Sintering in Microwave Oven

Gabriela Pitolli Lyra (Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Pirassununga, Brazil)
Valdemir Santos (Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Pirassununga, Brazil)
Eliria Maria de Jesus Agnolon Pallone (Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Pirassununga, Brazil)
Ruth Herta Goldschmidt Aliaga Kiminami (Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos, Brazil)
Bruno Carlos De Santis (Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos, Brazil)
João Adriano Rossignolo (Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Pirassununga, Brazil)

Article ID: 3802

DOI: https://doi.org/10.30564/nmms.v3i2.3802

Abstract


The present study investigated the incorporation of sugarcane bagasse ash (SCBA) in red ceramics, sintered in conventional oven and microwave oven, aiming to provide an alternative product, and a sintering process with higher energy efficiency in the production of red ceramics. The raw materials were characterized by XRF, XRD, thermogravimetry, particle size distribution and specific mass analyses. The specimens were shaped by extrusion in two different compositions, red clay and red clay with addition of 20 % SCBA and sintered at temperatures from 700 to 1100 ºC. The conventional sintering occurred for 60 min with heating rate of 10 ºC/min. In the microwave oven the sintering occurred in a hybrid way, with heating rate of 50 ºC/min for 5, 10 and 15 mins. After sintering the tests of linear shrinkage, compressive strength, water absorption, apparent porosity and apparent specific mass were performed. The addition of SCBA causes an increase in the values of water absorption and decreases the compressive strength and specific mass of the red ceramic. This occurs due to the creation of pores inside the material from the volatilization of organic matter present in the ashes. The sintering in microwave oven, when compared to conventional sintering, promotes an increase in the values of compressive strength and specific mass and reduction of water absorption values of ceramics, probably due to the refinement of the microstructure and the higher densification. Thus the incorporation of ashes can be partially compensated by a more efficient sintering. The use of SCBA and the sintering in microwave oven, showed to be viable alternatives in the development of a more sustainable and light material, promoting the management of waste, reduction in the consumption of raw materials and energy saving.


Keywords


Red clay; Agroindustrial waste; Non-conventional sintering; Energy efficiency

Full Text:

PDF

References


[1] P.S. Santos, Ciência e Tecnologia de Argilas, 2a , São Paulo, 1989.

[2] ANICER, Dados do Setor | ANICER, (2021) 1. https://www.anicer.com.br/anicer/setor/ (accessed March 4, 2021).

[3] G.T. Saleiro, J.N.F. Holanda, Processing of red ceramic using a fast-fring cycle, Ceramica. 58 (2012) 393-399. https://doi.org/10.1590/S0366- 69132012000300018.

[4] M. Dondi, Technological characterisation of clay materials: experimental methods and data interpretation, Int. Ceram. J. (2003) 55-59.

[5] K.C.P. Faria, J.N.F. Holanda, Thermal study of clay ceramic pastes containing sugarcane bagasse ash waste, J. Therm. Anal. Calorim. 114 (2013) 27-32. https://doi.org/10.1007/s10973-012-2878-1.

[6] UNICA, Histórico de Moagem, Obs. Da Cana. (2021). https://observatoriodacana.com.br/historico-de-producao-e-moagem.php?idMn=31&tipoHistorico=2&acao=visualizar&idTable=2492&- produto=cana&safraIni=2020%2F2021&safra Fim=2020%2F2021&estado=RS%2CSC%2C PR%2CSP%2CRJ%2CMG%2CES%2CMS%2CMT%2CGO%2CDF%2CBA%2CSE% - 2CAL%2CPE%2CPB%2CRN%2CCE%2CPI%2CMA%2CTO%2CPA%2CAP%2CRO%2CAM%- 2CAC%2CRR (accessed October 15, 2021).

[7] A. Joshaghani, M.A. Moeini, Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar, Constr. Build. Mater. 152 (2017) 818-831. https:// doi.org/10.1016/j.conbuildmat.2017.07.041.

[8] M. Frías, E. Villar, H. Savastano, Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture, Cem. Concr. Compos. 33 (2011) 490-496. https://doi. org/10.1016/j.cemconcomp.2011.02.003.

[9] E.P. de B. Ferreira, N.K. Fageria, A.D. Didonet, Chemical properties of an oxisol under organic management as influenced by application of sugarcane bagasse ash, Rev. Cienc. Agron. 43 (2012) 228-236. https://doi.org/10.1590/S1806-66902012000200004.

[10] N.L. Ukwattage, P.G. Ranjith, M. Bouazza, The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon), Fuel. 109 (2013) 400-408. https://doi.org/10.1016/j.fuel.2013.02.016.

[11] V.C. Pandey, N. Singh, Impact of fly ash incorporation in soil systems, Agric. Ecosyst. Environ. 136 (2010) 16-27. https://doi.org/10.1016/ j.agee.2009.11.013.

[12] M. Basu, M. Pande, P.B.S. Bhadoria, S.C. Mahapatra, Potential fly-ash utilization in agriculture: A global review, Prog. Nat. Sci. 19 (2009) 1173-1186. https://doi.org/10.1016/j.pnsc.2008.12.006.

[13] K.C.P. Faria, R.F. Gurgel, J.N.F. Holanda, Recycling of sugarcane bagasse ash waste in the production of clay bricks, J. Environ. Manage. 101 (2012) 7-12. https://doi.org/10.1016/j.jenvman.2012.01.032.

[14] L. Barbieri, F. Andreola, I. Lancellotti, R. Taurino, Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks, Waste Manag. 33 (2013) 2307- 2315. https://doi.org/10.1016/j.wasman.2013.03.014.

[15] S.M.S. Kazmi, S. Abbas, M.A. Saleem, M.J. Munir, A. Khitab, Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes, Constr. Build. Mater. 120 (2016) 29-41. https://doi.org/10.1016/j.conbuildmat.2016.05.084.

[16] S.R. Teixeira, A.E. De Souza, G.T. De Almeida Santos, A.F.V. Peña, Á.G. Miguel, Sugarcane bagasse ash as a potential quartz replacement in red ceramic, J. Am. Ceram. Soc. 91 (2008) 1883-1887. https://doi. org/10.1111/j.1551-2916.2007.02212.x.

[17] E.F.S. Ciacco, J.R. Rocha, A.R. Coutinho, The energy consumption in the ceramic tile industry in Brazil, Appl. Therm. Eng. 113 (2017) 1283-1289. https:// doi.org/10.1016/j.applthermaleng.2016.11.068.

[18] E.T. Thostenson, T.W. Chou, Microwave processing: fundamentals and applications, Compos. Part A Appl. Sci. Manuf. 30 (1999) 1055-1071. https://doi. org/10.1016/S1359-835X(99)00020-2.

[19] M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd. 494 (2010) 175-189. https://doi.org/10.1016/j.jallcom.2010.01.068.

[20] L. Esposito, A. Piancastelli, Y. Bykov, S. Egorov, A. Eremeev, Microwave sintering of Yb:YAG transparent laser ceramics, Opt. Mater. (Amst). 35 (2013) 761-765. https://doi.org/10.1016/j.optmat.2012.07.014.

[21] V.G. Karayannis, Microwave sintering of ceramic materials, IOP Conf. Ser. Mater. Sci. Eng. 161 (2016). https://doi.org/10.1088/1757-899X/161/1/012068.

[22] K.I. Rybakov, E.A. Olevsky, V.E. Semenov, The microwave ponderomotive effect on ceramic sintering, Scr. Mater. 66 (2012) 1049-1052. https://doi. org/10.1016/j.scriptamat.2012.02.043.

[23] S. Fan, H. Zheng, Q. Gao, Y. Li, Y. Chen, G. Liu, B. Fan, R. Zhang, Preparation of Al2O3-mullite thermal insulation materials with AlF3 and SiC as aids by microwave sintering, Int. J. Appl. Ceram. Technol. 17 (2020) 2250-2258. https://doi.org/10.1111/ ijac.13547.

[24] T. Ebadzadeh, M.H. Sarrafi, E. Salahi, Microwave-assisted synthesis and sintering of mullite, Ceram. Int. 35 (2009) 3175-3179. https://doi.org/10.1016/j.ceramint.2009.05.013.

[25] Y. Han, J. Feng, J. Zhou, F. Li, X. Huang, L. Wang, G. Liu, J. Cheng, Heating parameter optimization and optical properties of Nd:YAG transparent ceramics prepared by microwave sintering, Ceram. Int. 46 (2020) 20847-20855. https://doi.org/10.1016/j.ceramint.2020.05.117.

[26] E.B. Kulumbaev, V.E. Semenov, K.I. Rybakov, Stability of microwave heating of ceramic materials in a cylindrical cavity, J. Phys. D. Appl. Phys. 40 (2007) 6809-6817. https://doi.org/10.1088/0022- 3727/40/21/048.

[27] Ö.S. Canarslan, L. Koroglu, E. Ayas, N.S. Canarslan, A. Kara, P. Veronesi, Susceptor-assisted fast microwave sintering of TiN reinforced SiAlON composites in a single mode cavity, Ceram. Int. 47 (2021) 828- 835. https://doi.org/10.1016/j.ceramint.2020.08.194.

[28] G. Pitolli Lyra, V. Santos, E. Maria de Jesus Agnolon Pallone, R. Herta Goldschmidt Aliaga Kiminami, B. Carlos De Santis, J. Adriano Rossignolo, Microwave hybrid fast sintering of red clay ceramics, Int. J. Appl. Ceram. Technol. (2021) ijac.13676. https://doi. org/10.1111/ijac.13676.

[29] S. Tamang, S. Aravindan, 3D numerical modelling of microwave heating of SiC susceptor, Appl. Therm. Eng. 162 (2019) 114250. https://doi.org/10.1016/ j.applthermaleng.2019.114250.

[30] Z. Huang, M. Gotoh, Y. Hirose, Improving sinterability of ceramics using hybrid microwave heating, J. Mater. Process. Technol. 209 (2009) 2446-2452. https://doi.org/10.1016/j.jmatprotec.2008.05.037.

[31] R. Heuguet, S. Marinel, A. Thuault, A. Badev, Effects of the Susceptor Dielectric Properties on the Microwave Sintering of Alumina, J. Am. Ceram. Soc. 96 (2013) 3728-3736. https://doi.org/10.1111/ jace.12623.

[32] R. Taurino, A. Karamanov, R. Rosa, E. Karamanova, L. Barbieri, S. Atanasova-Vladimirova, G. Avdeev, C. Leonelli, New ceramic materials from MSWI bottom ash obtained by an innovative microwave-assisted sintering process, J. Eur. Ceram. Soc. 37 (2017) 323-331. https://doi.org/10.1016/j.jeurceramsoc.2016.08.011.

[33] G.P. Lyra, V. dos Santos, B.C. De Santis, R.R. Rivaben, C. Fischer, E.M. de J.A. Pallone, J.A. Rossignolo, Reuse of sugarcane bagasse ash to produce a lightweight aggregate using microwave oven sintering, Constr. Build. Mater. 222 (2019) 222-228. https://doi.org/10.1016/j.conbuildmat.2019.06.150.

[34] American Society for Testing and Materials, C114: Standard Test Methods for Chemical Analysis of Hydraulic Cement, (2018) 33.

[35] Associação Brasileira de Normas Técnicas, NBR 7180: Soil — Plasticity limit determination, (2016) 3.

[36] American Society for Testing and Materials, C373- 88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products Products, (2006) 2.

[37] Associação Brasileira de Normas Técnicas, NBR 5739: Concrete — Compression test of cylindrical specimens, (2018) 9.

[38] Associação Brasileira de Normas Técnicas, NBR 6502: Rochas e solos, (1995) 18.

[39] D.A. Keen, M.T. Dove, Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering, J. Phys. Condens. Matter. 11 (1999) 9263-9273. https://doi.org/10.1088/0953- 8984/11/47/311.


Refbacks

  • There are currently no refbacks.
Copyright © 2021 Author(s)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.