The Effect of ZnO on the Physicochemical and Mechanical Properties of Aluminosilicate Dental Cements

Authors

  • Zahra Kahrobaee Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq, Mashhad, Iran
  • Mohammad Mazinani Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq, Mashhad, Iran
  • Farzad Kermani Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq, Mashhad, Iran
  • Sahar Mollazadeh Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Azadi Sq, Mashhad, Iran

DOI:

https://doi.org/10.30564/nmms.v3i2.3806

Abstract

In this study, the effect of the addition of various amounts of ZnO (0, 1, 2, and 3 wt. %) to aluminosilicate bioactive glass (BGs) network (SiO2-Al2O3- P2O5-CaF2-CaO-K2O-Na2O) on the mechanical properties of the fabricated glass ionomer cement (GIC) samples was studied. The GIC samples were fabricated by mixing the synthesized aluminosilicate BGs with Rivaself cure liquid. The synthesized aluminosilicate glass was characterized using differential thermal analysis (DTA), X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Besides, the mechanical properties of GICs were evaluated using Vickers microhardness and Diametral tensile strength (DTS) test. According to DTA analysis, the glass transition temperature (Tg) of aluminosilicate BGs was decreased from 575 to 525 °C. According to the results, the aluminosilicate BGs with an amorphous state (~90%) and the grain size of 36 μm were synthesized. Doping of the ZnO to glass network up to 3 wt. % could increase the amorphous phase up to 95% and decrease the grain size of the particles up to 28 μm. The microhardness and DTS of the GIC samples containing the aluminosilicate BGs were about 677 Hv and 8.5 MPa, respectively. Doping of ZnO to the glass network increased the mentioned values up to 816 Hv and 12.1 MPa, respectively.

Keywords:

Aluminosilicate glasses, Glass ionomer cement (GIC), ZnO, Orthodontic applications

References

[1] S. Pagano, M. Chieruzzi, S. Balloni, G. Lombardo, L. Torre, M. Bodo, S. Cianetti, L. Marinucci, Biological, thermal and mechanical characterization of modified glass ionomer cements: The role of nanohydroxyapatite, ciprofloxacin and zinc L-carnosine, Mater. Sci. Eng. C. 94 (2019) 76-85. https://doi. org/10.1016/j.msec.2018.09.018.

[2] T. De Caluwé, C.W.J. Vercruysse, I. Ladik, R. Convents, H. Declercq, L.C. Martens, R.M.H. Verbeeck, Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility, Dent. Mater. 33 (2017) e186-e203. https://doi.org/10.1016/j.dental.2017.01.007.

[3] D.A. Kim, J.H. Lee, S.K. Jun, H.W. Kim, M. Eltohamy, H.H. Lee, Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties, Dent. Mater. 33 (2017) 805-817. https://doi.org/10.1016/j.dental.2017.04.017.

[4] L.S. Bueno, R.M. Silva, A.P.R. Magalhães, M.F.L. Navarro, R.C. Pascotto, M.A.R. Buzalaf, J.W. Nicholson, S.K. Sidhu, A.F.S. Borges, Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements, Dent. Mater. 35 (2019) 135-143. https://doi.org/10.1016/j.dental.2018.11.007.

[5] J.W. Nicholson, S.K. Sidhu, B. Czarnecka, Enhancing the mechanical properties of glass-ionomer dental cements: A review, Materials (Basel). 13 (2020) 1-14. https://doi.org/10.3390/ma13112510.

[6] I.A. Moheet, N. Luddin, I.A. Rahman, T.P. Kannan, N.R. Nik Abd Ghani, S.M. Masudi, Modifications of Glass Ionomer Cement Powder by Addition of Recently Fabricated Nano-Fillers and Their Effect on the Properties: A Review, Eur. J. Dent. 13 (2019) 470-477. https://doi.org/10.1055/s-0039-1693524.

[7] J. Chen, Q. Zhao, J. Peng, X. Yang, D. Yu, W. Zhao, Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements, J. Dent. 96 (2020) 103332. https://doi.org/10.1016/j.jdent.2020.103332.

[8] I.A. Moheet, N. Luddin, I. Ab Rahman, S.M. Masudi, T.P. Kannan, N.R.N. Abd Ghani, Evaluation of mechanical properties and bond strength of nano-hydroxyapatite-silica added glass ionomer cement, Ceram. Int. 44 (2018) 9899-9906. https://doi. org/10.1016/j.ceramint.2018.03.010.

[9] L. Singer, Evaluation of the physico-mechanical properties of a new antimicrobial-modified glass ionomer cement Lamia Singer, (2021). https://bonndoc. ulb.uni-bonn.de/xmlui/handle/20.500.11811/9181.

[10] S. Mollazadeh, B. Eftekhari Yekta, J. Javadpour, A. Yusefi, T.S. Jafarzadeh, The role of TiO2, ZrO2, BaO and SiO2 on the mechanical properties and crystallization behavior of fluorapatite-mullite glass-ceramics, J. Non. Cryst. Solids. 361 (2013) 70-77. https:// doi.org/10.1016/j.jnoncrysol.2012.10.009.

[11] F.D. Haghighi, S.M. Beidokhti, Z.T. Najaran, S. Sahebian Saghi, Highly improved biological and mechanical features of bioglass-ceramic/ gelatin composite scaffolds using a novel silica coverage, Ceram. Int. 47 (2021) 14048-14061. https://doi.org/10.1016/ j.ceramint.2021.01.274.

[12] X. Bao, F. Liu, J. He, Mechanical properties and water-aging resistance of glass ionomer cements reinforced with 3-aminopropyltriethoxysilane treated basalt fibers, J. Mech. Behav. Biomed. Mater. 116 (2021) 104369. https://doi.org/10.1016/ j.jmbbm.2021.104369.

[13] T. Hasegawa, S. Takenaka, T. Ohsumi, T. Ida, H. Ohshima, Y. Terao, T. Naksagoon, T. Maeda, Y. Noiri, Effect of a novel glass ionomer cement containing fluoro-zinc-silicate fillers on biofilm formation and dentin ion incorporation, Clin. Oral Investig. 24 (2020) 963-970. https://doi.org/10.1007/s00784-019-02991-0.

[14] Luddin N, Ching HS, Ab Rahman I, Kannan TP, Ghani NR. Cytotoxicity and Dentinogenic Potential of Nano-Hydroxyapatite-Silica Glass Ionomer Cement. Penerbit USM; 2021.

[15] I. Cockerill, Y. Su, S. Sinha, Y.X. Qin, Y. Zheng, M.L. Young, D. Zhu, Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach, Mater. Sci. Eng. C. 110 (2020) 110738. https://doi.org/10.1016/ j.msec.2020.110738.

[16] D. Skrajnowska, B. Bobrowska-Korczak, Role of zinc in immune system and anti-cancer defense mechanisms, Nutrients. 11 (2019). https://doi. org/10.3390/nu11102273.

[17] S. Mukherjee, Synthesis and Characterization of Trivalent al Substituted Zinc Ferrite using Ethylene Diamine (EDA) as Ligand, Non-Metallic Mater. Sci. 2 (2020) 8-14. https://doi.org/10.30564/omms. v2i2.1863.

[18] G.N. Elham, F. Kermani, M. Mashreghi, J.V. Khakhi, S. Mollazadeh, Interference of oxygen during the solution combustion synthesis process of ZnO particles: experimental and data modeling approaches, Ind. Eng. Chem. (2021). (currently under review).

[19] H. Aali, N. Azizi, N.J. Baygi, F. Kermani, M. Mashreghi, A. Youssefi, S. Mollazadeh, J.V. Khaki, H. Nasiri, High antibacterial and photocatalytic activity of solution combustion synthesized Ni0.5Zn0.5Fe2O4 nanoparticles: Effect of fuel to oxidizer ratio and complex fuels, Ceram. Int. 45 (2019) 19127-19140. https://doi.org/10.1016/j.ceramint.2019.06.159.

[20] L. Cormier, L. Delbes, B. Baptiste, V. Montouillout, Vitrification, crystallization behavior and structure of zinc aluminosilicate glasses, J. Non. Cryst. Solids. 555 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120609.

[21] F. Kermani, S.M. Beidokhti, F. Baino, Z. Gholamzadeh-Virany, M. Mozafari, S. Kargozar, Strontium-and cobalt-doped multicomponent mesoporous bioactive glasses (MBGS) for potential use in bone tissue engineering applications, Materials (Basel). 13 (2020) 1348. https://doi.org/10.3390/ma13061348.

[22] F. Kermani, A. Gharavian, S. Mollazadeh, S. Kargozar, A. Youssefi, J. Vahdati Khaki, Silicon-doped calcium phosphates; the critical effect of synthesis routes on the biological performance, Mater. Sci. Eng. C. 111 (2020) 110828. https://doi.org/10.1016/ j.msec.2020.110828.

[23] F. Kermani, S. Mollazadeh, S. Kargozar, J.V. Khakhi, Solution combustion synthesis ( SCS ) of theranostic ions doped biphasic calcium phosphates ; kinetic of ions release in simulated body fluid ( SBF ) and reactive oxygen species ( ROS ) generation, Mater. Sci. Eng. C. 118 (2021) 111533. https://doi. org/10.1016/j.msec.2020.111533.

[24] D.S. Sanditov, M.I. Ojovan, On relaxation nature of glass transition in amorphous materials, Phys. B Condens. Matter. 523 (2017) 96-113. https://doi. org/10.1016/j.physb.2017.08.025.

[25] M.N. Azlan, M.K. Halimah, A.B. Suriani, Y. Azlina, S.A. Umar, R. El-Mallawany, Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass, Opt. Commun. 448 (2019) 82-88. https://doi.org/10.1016/j.optcom.2019.05.022.

[26] F. Kermani, S. Kargozar, Z. Tayarani-Najaran, A. Yousefi, S.M. Beidokhti, M.H. Moayed, Synthesis of nano HA/βTCP mesoporous particles using a simple modification in granulation method, Mater. Sci. Eng. C. 96 (2019). https://doi.org/10.1016/ j.msec.2018.11.045.

[27] S. Mollazadeh, J. Javadpour, A. Khavandi, Biomimetic synthesis and mechanical properties of hydroxyapatite/poly (vinyl alcohol) nanocomposites, Adv. Appl. Ceram. 106 (2007) 165-170. https://doi. org/10.1179/174367607X168996.

[28] S. Kargozar, N. Lotfibakhshaiesh, J. Ai, M. Mozafari, P. Brouki, S. Hamzehlou, M. Barati, F. Baino, R.G. Hill, M. Taghi, Acta Biomaterialia Strontiumand cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities, Acta Biomater. (2017). https:// doi.org/10.1016/j.actbio.2017.06.021.

[29] H. Kazemi, F. Kermani, S. Mollazadeh, J. Vahdati Khakhi, The significant role of the glycine-nitrate ratio on the physicochemical properties of CoxZn1−xO nanoparticles, Int. J. Appl. Ceram. Technol. 17 (2020) 1852-1868. https://doi.org/10.1111/ijac.13515.

[30] F. Kermani, S. Mollazadeh, S. Kargozar, J.V. Khakhi, Improved Osteogenesis and Angiogenesis of the Surface Functionalized Calcium Phosphates (CaPs): A State-of-the-Art Study, Mater. Sci. Eng. C. (2020).

[31] S. Shorvazi, F. Kermani, S. Mollazadeh, A. Kiani-Rashid, S. Kargozar, A. Youssefi, Coating Ti6Al4V substrate with the triple-layer glass-ceramic compositions using sol-gel method; the critical effect of the composition of the layers on the mechanical and in vitro biological performance, J. Sol-Gel Sci. Technol. 94 (2020). https://doi.org/10.1007/s10971- 020-05233-y.

[32] E. Varini, S. Sánchez-Salcedo, G. Malavasi, G. Lusvardi, M. Vallet-Regí, A.J. Salinas, Cerium (III) and(IV) containing mesoporous glasses/alginate beads for bone regeneration: Bioactivity, biocompatibility and reactive oxygen species activity, Mater. Sci. Eng. C. 105 (2019) 109971. https://doi.org/10.1016/ j.msec.2019.109971.

[33] S. Kargozar, F. Kermani, S.M. Beidokhti, S. Hamzehlou, E. Verné, S. Ferraris, F. Baino, Functionalization and surface modifications of bioactive glasses (BGs): Tailoring of the biological response working on the outermost surface layer, Materials (Basel). 12 (2019) 3696-3714. https://doi.org/10.3390/ ma12223696.

[34] F. Kermani, S. Mollazadeh, J. Vahdati Khaki, A simple thermodynamics model for estimation and comparison the concentration of oxygen vacancies generated in oxide powders synthesized via the solution combustion method, Ceram. Int. 45 (2019) 13496-13501. https://doi.org/10.1016/j.ceramint.2019.04.053.

[35] A. Flores, F. Ania, F.J. Baltá-Calleja, From the glassy state to ordered polymer structures: A microhardness study, Polymer (Guildf). 50 (2009) 729-746. https:// doi.org/10.1016/j.polymer.2008.11.037.

[36] P. Barfi Sistani, S. Mollazadeh Beidokhti, A. Kiani-Rashid, Improving the microstructural and mechanical properties of in-situ zirconia-mullite composites by optimizing the simultaneous effect of mechanical activation and additives, Ceram. Int. 46 (2020) 1472-1486. https://doi.org/10.1016/j.ceramint.2019.09.113.

[37] J. Wegner, M. Frey, M. Piechotta, N. Neuber, B. Adam, S. Platt, L. Ruschel, N. Schnell, S.S. Riegler, H.R. Jiang, G. Witt, R. Busch, S. Kleszczynski, Influence of powder characteristics on the structural and the mechanical properties of additively manufactured Zr-based bulk metallic glass, Mater. Des. 209 (2021) 109976. https://doi.org/10.1016/j.matdes.2021.109976.

[38] N. Sohrabi, J. Jhabvala, R.E. Logé, Additive manufacturing of bulk metallic glasses—process, challenges and properties: A review, Metals (Basel). 11 (2021). https://doi.org/10.3390/met11081279.

[39] R. Haak, T. Näke, K.J. Park, D. Ziebolz, F. Krause, H. Schneider, Internal and marginal adaptation of high-viscosity bulk-fill composites in class II cavities placed with different adhesive strategies, Odontology. 107 (2018) 374-382. https://doi.org/10.1007/ s10266-018-0402-1.

[40] Z. Mollaei, F. Kermani, F. Moosavi, S. Kargozar, J.V. Khakhi, S. Mollazadeh, In silico study and experimental evaluation of the solution combustion synthesized manganese oxide (MnO2) nanoparticles, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.09.245.

Downloads

How to Cite

Kahrobaee, Z., Mazinani, M., Kermani, F., & Mollazadeh, S. (2021). The Effect of ZnO on the Physicochemical and Mechanical Properties of Aluminosilicate Dental Cements. Non-Metallic Material Science, 3(2), 17–25. https://doi.org/10.30564/nmms.v3i2.3806

Issue

Article Type

Article