A Brief Review on Fundamentals of Conductive Polymer (CPs)

Authors

  • Subhadeep Chakraborty Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Calcutta, 700009, India
  • Rahul Chatterjee Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Calcutta, 700009, India
  • Abhijit Bandyopadhyay Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Calcutta, 700009, India

DOI:

https://doi.org/10.30564/opmr.v4i1.4395

Abstract

Polymers are huge compounds made up of numerous monomers (repeatedsubunits). They have similar macro and micro properties, as well aselectrical transport qualities, semiconductive capabilities, and opticalfeatures. With the advent of conductive polyacetylene, conductivepolymers have gotten a lot of interest. These conductors have a wide rangeof electrical conductivity, which may be produced by doping, while beingmechanically flexible and having a high thermal stability. Polymers may becreated using a variety of methods, including chemical and electrochemicalpolymerization. With advancement in material stability and greaterproperty control, an increasing variety of new applications are now beinginvestigated.

Keywords:

Polymers, Conducting, Synthesis, Optical properties, Structures

References

[1] Awuzie, C.I., 2017. Conducting Polymers. Materials Today: Proceedings. 4, 5721-5726. DOI: https://doi.org/10.1016/j.matpr.2017.06.036

[2] Harun, M.H., Saion, E., Kassim, A., et al., 2007. Conjugated Conducting Polymers : A Brief Overview, Sensors Peterbrgh. NH. 2, 63-68. http://sedaya.edu.my/jasa/2/papers/08I.pdf

[3] Sardar, S., Roy, I., Chakraborty, S., et al., 2021. A selective approach towards synthesis of poly (3-bromo thiophene)/graphene quantum dot composites via in-situ and ex-situ routes: Application in light emis-sion and photocurrent generation. Electrochimica Acta. 365. DOI: https://doi.org/10.1016/j.electacta.2020.137369

[4] Shirzad, M., Karimi, M., 2020. Statistical analysis and optimal design of polymer inclusion membrane for water treatment by Co(II) removal. Desalination and Water Treatment. 182, 194-207. DOI: https://doi.org/10.5004/dwt.2020.25214

[5] Shirzad, M., Karimi, M., Abolghasemi, H., 2019. Polymer inclusion membranes with dinonylnaphthalene sulfonic acid as ion carrier for Co(II) transport from model solutions. Desalination and Water Treatment. 144, 185-200. DOI: https://doi.org/10.5004/dwt.2019.23575

[6] Midya, L., Chettri, A., Pal, S., 2019. Development of a Novel Nanocomposite Using Polypyrrole Grafted Chitosan-Decorated CDs with Improved Photocatalytic Activity under Solar Light Illumination. ACS Sustain. Chemical Engineering. 7, 9416-9421. DOI: https://doi.org/10.1021/acssuschemeng.9b00615

[7] Heeger, H., MacDiarmid, Alan J., Shirakawa, Alan G., 1974. Advanced Information - The Nobel Prize in Chemistry 2000. Nobel Media AB 2019. pp. 1-16. DOI: https://doi.org/10.1007/978-1-84996-290-2

[8] Zhang, C., Liu, L., Okamoto, Y., 2020. Enantioseparation using helical polyacetylene derivatives. Tractrends In Analytical Chemistry. 123, 115762. DOI: https://doi.org/10.1016/j.trac.2019.115762

[9] Miao, Z., Gonsales, S.A., Ehm, C., et al., 2021. Cyclic polyacetylene. Nature Chemistry. 13, 792-799. DOI: https://doi.org/10.1038/s41557-021-00713-2

[10] Wang, S., Sun, Q., Gröning, O., et al., 2019. On-surface synthesis and characterization of individual polyacetylene chains. Nature Chemistry. 11, 924-930. DOI: https://doi.org/10.1038/s41557-019-0316-8

[11] Husain, A., Ahmad, S., Mohammad, F., 2020. Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite. Materials Chemistry and Physics. 239,122324. DOI: https://doi.org/10.1016/j.matchemphys.2019.122324

[12] Shiraishi, Y., Matsumoto, M., Ichikawa, S., et al., 2021. Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion. Journal of the American Chemical Society. 143, 12590-12599. DOI: https://doi.org/10.1021/jacs.1c04622

[13] Wang, Q., Qin, Y., Li, M., et al., 2020. Molecular Engineering and Morphology Control of Polythiophene:Nonfullerene Acceptor Blends for High-Performance Solar Cells. Advanced Energy Materials.10, 1-26. DOI: https://doi.org/10.1002/aenm.202002572

[14] Liang, Z., Li, M., Wang, Q., et al., 2020. Optimization Requirements of Efficient Polythiophene: Nonfullerene Organic Solar Cells. Joule. 4, 1278-1295. DOI: https://doi.org/10.1016/j.joule.2020.04.014

[15] Lu, Y., Wang, S., Xiong, C., et al., 2020. Synthesis and characterization of a liquid-like polythiophene and its potential applications. Synthetic Metals. 270, 116603. DOI: https://doi.org/10.1016/j.synthmet.2020.116603

[16] Pang, A.L., Arsad, A., Ahmadipour, M., 2021. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies. 32, 1428-1454. DOI: https://doi.org/10.1002/pat.5201

[17] Maruthapandi, M., Nagvenkar, A.P., Perelshtein, I., et al., 2019. Carbon-Dot Initiated Synthesis of Polypyrrole and Polypyrrole@CuO Micro/Nanoparticles with Enhanced Antibacterial Activity. ACS Applied Polymer Materials. 1, 1181-1186. DOI: https://doi.org/10.1021/acsapm.9b00194

[18] Sahu, S., Kar, P., Bishoyi, N., et al., 2019. Synthesis of Polypyrrole-Modified Layered Double Hydroxides for Efficient Removal of Cr(VI). Journal of Chemical & Engineering Data. 64, 4357-4368. DOI: https://doi.org/10.1021/acs.jced.9b00444

[19] Wang, C., Yang, M., Liu, L., et al., 2020. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature. Journal of Colloid and Interface Science. 560, 312- 320. DOI: https://doi.org/10.1016/j.jcis.2019.10.076

[20] Yi, T.F., Mei, J., Peng, P.P., et al., 2019. Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Composites Part B-Engineering. 167, 566-572. DOI: https://doi.org/10.1016/j.compositesb.2019.03.032

[21] Petsagkourakis, I., Kim, N., Tybrandt, K., et al., 2019. Poly(3,4-ethylenedioxythiophene): Chemical Synthesis, Transport Properties, and Thermoelectric Devices. Advanced Electronic Materials. 5, 1-20. DOI: https://doi.org/10.1002/aelm.201800918

[22] Jiang, Y., Liu, T., Zhou, Y., 2020. Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly (3,4-ethylenedioxythiophene), and Applications in Solution-Processed Photovoltaics. Advanced Functional Materials. 2006213, 1-46. DOI: https://doi.org/10.1002/adfm.202006213

[23] Rahimzadeh, Z., Naghib, S.M., Zare, Y., et al., 2020. An overview on the synthesis and recent applications of conducting poly (3,4-ethylenedioxythiophene) (PEDOT) in industry and biomedicine. Journal of Materials Science. 55, 7575-7611. DOI: https://doi.org/10.1007/s10853-020-04561-2

[24] Hui, Y., Bian, C., Xia, S., et al., 2018. Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: A review. Analytica Chimica Acta. 1022, 1-19. DOI: https://doi.org/10.1016/j.aca.2018.02.080

[25] Namsheer, K., Rout, C.S., 2021. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances. 11, 5659-5697. DOI: https://doi.org/10.1039/d0ra07800j

[26] Zhang, Y., Ye, J., Liu, Z., et al., 2020. Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. Journal of Materials Chemistry C. 8, 10868-10879. DOI: https://doi.org/10.1039/d0tc01174f

[27] Elacqua, E., Geberth, G.T., Vanden Bout, D.A., et al., 2019. Synthesis and folding behaviour of poly(p-phenylene vinylene)-based β-sheet polychromophores. Chemical Science. 10, 2144-2152. DOI: https://doi.org/10.1039/c8sc05111a

[28] Rodrigues, A.C.B., Geisler, I.S., Klein, P., et al., 2020. Designing highly fluorescent, arylated poly(phenylene vinylene)s of intrinsic microporosity. Journal of Materials Chemistry C. 8, 2248-2257. DOI: https://doi.org/10.1039/c9tc06028f

[29] Hsu, T.W., Kim, C., Michaudel, Q., 2020. Stereoretentive Ring-Opening Metathesis Polymerization to Access All- cis Poly(p-phenylenevinylene)s with Living Characteristics. Journal of the American Chemical Society. 142, 11983-11987. DOI: https://doi.org/10.1021/jacs.0c04068

[30] Zhang, H., Zhong, H., Dou, F., et al., 2021. Electrospinning bifunctional polyphenylene-vinylene/heated graphene oxide composite nanofibers with luminescent-electrical performance. Thin Solid Films. 725. DOI: https://doi.org/10.1016/j.tsf.2021.138636

[31] Ikizer, B., Lawton, C.W., Orbey, N., 2021. Poly (para-phenylene) fibers - Characterization and preliminary data for conversion to carbon fiber. Polymer (Guildf). 228, 123945. DOI: https://doi.org/10.1016/j.polymer.2021.123945

[32] Pavlović, D., Cohen, S., 2020. Controlled synthesis of unsubstituted high molecular weight poly(: Para -phenylene) via Suzuki polycondensation-thermal aromatization methodology. Polymer Chemistry. 11, 2550-2558. DOI: https://doi.org/10.1039/d0py00001a

[33] McBrearty, J., Barker, D., Damavandi, M., et al., 2018. Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium. RSC Advances. 8, 23433-23441. DOI: https://doi.org/10.1039/C8RA02673D

[34] Lobo, L.S., Matsumoto, K., Jikei, M., et al., 2021. Hyperbranched Polyphenylene as an Electrode for Li-Ion Batteries. Energy Technology. 9, 1-7. DOI: https://doi.org/10.1002/ente.202100374

[35] Zhou, W.X., Cheng, Y., Chen, K.Q., et al., 2020. Thermal Conductivity of Amorphous Materials. Advanced Functional Materials. 30, 1-17. DOI: https://doi.org/10.1002/adfm.201903829

[36] Iqbal, S., Ahmad, S., 2018. Recent development in hybrid conducting polymers: Synthesis, applications and future prospects. Journal of Industrial and Engineering Chemistry. 60, 53-84. DOI: https://doi.org/10.1016/j.jiec.2017.09.038

[37] Han, Y., Dai, L., 2019. Conducting Polymers for Flexible Supercapacitors. Macromol. Chemical Physics. 220, 1-14. DOI: https://doi.org/10.1002/macp.201800355

[38] Tomczykowa, M., Plonska-Brzezinska, M.E., 2019. Conducting polymers, hydrogels and their composites: Preparation, properties and bioapplications. Polymers (Basel). 11, 1-36. DOI: https://doi.org/10.3390/polym11020350

[39] Yildiz, Z., Usta, I., Gungor, A., 2013. Investigation of the Electrical Properties and Electromagnetic Shielding Effectiveness of Polypyrrole Coated Cotton Yarns. Fibres & Textiles in Eastern Europe. 98, 32-37.

[40] Yildiz, Z., Usta, I., Gungor, A., 2012. Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition. Textile Research Journal. 82, 2137-2148. DOI: https://doi.org/10.1177/0040517512449046

[41] Murugappan, K., Castell, M.R., 2018. Bridging electrode gaps with conducting polymers around the electrical percolation threshold. Electrochemistry Communications. 87, 40-43. DOI: https://doi.org/10.1016/j.elecom.2017.12.019

[42] Li, H., Lambert, C., Stahl, R., 2006. Conducting polymers based on alkylthiopyrroles. Macromolecules. 39, 2049-2055. DOI: https://doi.org/10.1021/ma0601868

[43] Zujovic, Z., Kilmartin, P.A., Travas-sejdic, J., 2020. Polymers. The Special Case on Polyaniline. Molecules. 25, 1-20.

[44] Wahane, D.S., Khobragade, Y.F., Gholse, S.B., et al., 2012. Synthesis and Structural Characterization of Polypyrrole / Metal Oxide Composite by NMR Spectroscopy. Journal Chemical Science. 2, 148-153.

[45] Hiragond, C.B., Khanna, P.K., More, P.V., 2018. Probing the real-time photocatalytic activity of CdS QDs sensitized conducting polymers: Featured PTh, PPy and PANI. Vacuum. 155, 159-168. DOI: https://doi.org/10.1016/j.vacuum.2018.06.009

[46] Xu, Y., Ma, Y., Ji, X., et al., 2019. Conjugated conducting polymers PANI decorated Bi12O17Cl2 photocatalyst with extended light response range and enhanced photoactivity. Applied Surface Science. 464, 552-561. DOI: https://doi.org/10.1016/j.apsusc.2018.09.103

[47] Krishnaswamy, S., Ragupathi, V., Raman, S., et al., 2019. Optical properties of P-type polypyrrole thin film synthesized by pulse laser deposition technique: Hole transport layer in electroluminescence devices. Optik (Stuttg). 194, 163034. DOI: https://doi.org/10.1016/j.ijleo.2019.163034

[48] Puiggalĺ-Jou, A., Del Valle, L.J., Alemán, C., 2020. Encapsulation and Storage of Therapeutic Fibrin-Homing Peptides using Conducting Polymer Nanoparticles for Programmed Release by Electrical Stimulation. ACS Biomaterials Science & Engineering. 6, 2135-2145. DOI: https://doi.org/10.1021/acsbiomaterials.9b01794

[49] Poddar, A.K., Patel, S.S., Patel, H.D., 2021. Synthesis, characterization and applications of conductive polymers: A brief review. Polymers for Advanced Technologies. 32(2021), 4616-4641. DOI: https://doi.org/10.1002/pat.5483

[50] Prunet, G., Pawula, F., Fleury, G., et al., 2021. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Materials Today Physics. 18, 100402. DOI: https://doi.org/10.1016/j.mtphys.2021.100402

[51] Wu, J.G., Chen, J.H., Liu, K.T., et al., 2019. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS Applied Materials & Interfaces. 11, 21294-21307. DOI: https://doi.org/10.1021/acsami.9b04924

[52] Talikowska, M., Fu, X., Lisak, G., 2019. Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens. Bioelectron. 135, 50-63. DOI: https://doi.org/10.1016/j.bios.2019.04.001

[53] Trojanowicz, M., 2003. Application of Conducting Polymers in Chemical Analysis. Microchimica Acta. 143, 75-91. DOI: https://doi.org/10.1007/s00604-003-0066-5

[54] Gereadr, M., Choubey, A., Malhotra, B., 2001. Review: Application of Conducting Polymer to Biosensors, Biosens. Bioelectron. 17, 345-359.

[55] Guo, X., Facchetti, A., 2020. The journey of conducting polymers from discovery to application. Nature Materials. 19, 922-928. DOI: https://doi.org/10.1038/s41563-020-0778-5.

[56] Kraft, U., Molina-Lopez, F., Son, D., et al., 2020. Ink Development and Printing of Conducting Polymers for Intrinsically Stretchable Interconnects and Circuits. Advanced Electronic Materials. 6, 1-9. DOI: https://doi.org/10.1002/aelm.201900681

[57] Jeong, S.H., Kim, H., Park, M.H., et al., 2019. Ideal conducting polymer anode for perovskite light-emitting diodes by molecular interaction decoupling. Nano Energy. 60, 324-331. DOI: https://doi.org/10.1016/j.nanoen.2019.03.030

[58] Bilal, S., Farooq, S., Shah, A.U.H.A., et al., 2014. Improved solubility, conductivity, thermal stability and corrosion protection properties of poly(o-toluidine) synthesized via chemical polymerization. Synthetic Metals. 197, 144-153. DOI: https://doi.org/10.1016/j.synthmet.2014.09.003

[59] Tüken, T., Yazici, B., Erbil, M., 2005. Electrochemical synthesis of polythiophene on nickel coated mild steel and corrosion performance. Applied Surface Science. 239, 398-409. DOI: https://doi.org/10.1016/j.apsusc.2004.06.006

[60] Marzocchi, M., Gualandi, I., Calienni, M., et al., 2015. Physical and Electrochemical Properties of PEDOT:PSS as a Tool for Controlling Cell Growth. ACS Applied Materials & Interfaces. 7, 17993- 18003. DOI: https://doi.org/10.1021/acsami.5b04768

Downloads

How to Cite

Chakraborty, S., Chatterjee, R., & Bandyopadhyay, A. (2022). A Brief Review on Fundamentals of Conductive Polymer (CPs). Organic Polymer Material Research, 4(1), 1–11. https://doi.org/10.30564/opmr.v4i1.4395

Issue

Article Type

Reviews