N-heterocyclic Carbene Catalysed Polymerisation of 2,5-Diformylfuran

Wouter Ruelens (Department of Chemistry, KU Leuven, Leuven, 3001, Belgium)
Fariba Mafakheri (1. Department of Chemistry, KU Leuven, Leuven, 3001, Belgium 2. Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455, Iran)
Viktor Van Lierde (Department of Chemistry, KU Leuven, Leuven, 3001, Belgium)
Mario Smet (Department of Chemistry, KU Leuven, Leuven, 3001, Belgium)

Article ID: 4953

DOI: https://doi.org/10.30564/opmr.v4i2.4953

Abstract


The biobased renewable monomer 2,5-diformylfuran is polymerised using various N-heterocyclic carbene (NHC) catalysts in dimethyl sulfoxide (DMSO) affording a low molar mass polymer. It is shown that catalyst structure as well as the temperature and time the polymerization is running have a noticeable effect on its molar mass. The obtained material is characterized by nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). An attempt at chain extension with diamine leads to precipitation of the polymer. This new biobased polymer material might be useful as a sustainable resin.

Keywords


Biobased polymer; 2,5-diformylfuran; NHC

Full Text:

PDF

References


[1] Ogale, A.A., Zhang, M., Jin, J., 2016. Recent advances in carbon fibers derived from biobased precursors. Journal of Applied Polymer Science. 133, 45. DOI: https://doi.org/10.1002/app.43794

[2] Cai, C.M., Zhang, T.Y., Kumar, R., et al., 2014. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. Journal of Chemical Technology and Biotechnology. 89(1), 2-10. DOI: https://doi.org/10.1002/jctb.4168

[3] Huang, Y.B., Yang, Z., Dai, J.J., et al., 2012. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C–C bond formation of furfural, -methylfurfural and aromatic aldehyde. RSC Advances. 2(30), 11211. DOI: https://doi.org/10.1039/c2ra22008c

[4] Hoydonckx, H.E., Van Rhijn, W.M., Van Rhijn, W., et al., 2007. Furfural and Derivatives. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany. DOI: https://doi.org/10.1002/14356007.a12_119.pub2

[5] Mariscal, R., Maireles-Torres, P., Ojeda, M., et al., 2016. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science. 9(4), 1144-1189. DOI: https://doi.org/10.1039/C5EE02666K

[6] Girka, Q., Estrine, B., Hoffmann, N., et al., 2016. Simple efficient one-pot synthesis of 5-hydroxymethylfurfural and 2,5-diformylfuran from carbohydrates. Reaction Chemistry & Engineering. 1(2), 176-182. DOI: https://doi.org/10.1039/C5RE00004A

[7] Sarmah, B., Srivastava, R., 2019. Selective two-step synthesis of 2,5-diformylfuran from monosaccharide, disaccharide, and polysaccharide using H-Beta and octahedral MnO2 molecular sieves. Molecular Catalysis. 92-103. DOI: https://doi.org/10.1016/j.mcat.2018.11.001

[8] John, G., Nagarajan, S., Vemula, P.K., et al., 2019. Natural monomers: A mine for functional and sustainable materials–Occurrence, chemical modification and polymerization. Progress in Polymer Science. 92, 158-209. DOI: https://doi.org/10.1016/J.PROGPOLYMSCI.2019.02.008

[9] Fache, M., Darroman, E., Besse, V., et al., 2014. Vanillin, a promising biobased building-block for monomer synthesis. Green Chemistry. 16(4), 1987-1998. DOI: https://doi.org/10.1039/C3GC42613K

[10] Cao, L., Yu, I.K.M., Liu, Y., et al., 2018. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresource Technology. 269, 465-475. DOI: https://doi.org/10.1016/j.biortech.2018.08.065

[11] Araújo, J.D.P., Grande, C.A., Rodrigues, A.E., 2010. Vanillin production from lignin oxidation in a batch reactor. Chemical Engineering Research and Design. 88(8), 1024-1032. DOI: https://doi.org/10.1016/j.cherd.2010.01.021

[12] Bello, S., Salim, I., Méndez-Trelles, P., et al., 2018. Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA). Holzforschung. 73(1), 105-115. DOI: https://doi.org/10.1515/hf-2018-0100

[13] Motagamwala, A.H., Won, W., Sener, C., et al., 2018. Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose. Science Advances. 4(1), eaap9722. DOI: https://doi.org/10.1126/sciadv.aap9722

[14] Ma, J., Wang, M., Du, Z.,et al., 2012. Synthesis and properties of furan-based imine-linked porous organic frameworks. Polymer Chemistry. 3(9), 2346-2349. DOI: https://doi.org/10.1039/c2py20367g

[15] Hui, Z., Gandini, A.,1992. Polymeric schiff bases bearing furan moieties. European Polymer Journal. 28(12), 1461-1469. DOI: https://doi.org/10.1016/0014-3057(92)90135-O

[16] Wayne Cooke, A.B., Wagener, K., 2002. An investigation of polymerization via reductive coupling of carbonyls. Macromolecules. 24(6), 1404-1407. DOI: https://doi.org/10.1021/ma00006a029

[17] Amarasekara, A.S., Green, D., Williams, L.D., 2009. Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran–urea resin. European Polymer Journal. 45(2), 595-598. DOI: https://doi.org/10.1016/j.eurpolymj.2008.11.012

[18] Pinaud, J., Vijayakrishna, K., Taton, D., et al., 2009. Step-Growth Polymerization of Terephthaldehyde Catalyzed by N -Heterocyclic Carbenes. Macromolecules. 42(14), 4932-4936. DOI: https://doi.org/10.1021/ma900907f

[19] Liu, N., 2013. New polymers synthesis by organocatalyzed step-growth polymerization of aldehydic monomers : polyaldols, linear polybenzoin and hyperbranched polyacetals. DOI: https://tel.archives-ouvertes.fr/tel-01081197

[20] Wöhler, L., 1832. Study on the radical of benzoic acid. Journal of Pharmacy (In German). 3(3), 249-282. DOI: https://doi.org/10.1002/jlac.18320030302

[21] Ukai, T., Tanaka, R., Dokawa, T., 1943. A new catalyst for acyloin condensation. Journal of the Pharmaceutical Society of Japan. 63, 296-300.

[22] Flanigan, D.M., Romanov-Michailidis, F., White, N.A., et al., 2015. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chemical Reviews. 115(17), 9307-9387. DOI: https://doi.org/10.1021/acs.chemrev.5b00060

[23] Baragwanath, L., Rose, C.A., Zeitler, K., et al., 2009. Highly Enantioselective Benzoin Condensation Reactions Involving a Bifunctional Protic Pentafluorophenyl-Substituted Triazolium Precatalyst. The Journal of Organic Chemistry. 74(23), 9214-9217. DOI: https://doi.org/10.1021/jo902018j

[24] Romanov-Michailidis, F., Besnard, C., Alexakis, A., 2012. N-Heterocyclic Carbene-Catalyzed Annulation of α-Cyano-1,4-diketones with Ynals, Organic Letters. 14(18), 4906-4909. DOI: https://doi.org/10.1021/ol3022287

[25] Enders, D., Breuer, K., Kallfass, U., et al., 2003. Preparation and application of 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene, a stable carbene, Synthesis. 8, 1292-1295. DOI: https://doi.org/10.1055/s-2003-39409

[26] Ma, Y., Wei, S., Wu, J., et al., 2008. From mono-triazolium salt to bis-triazolium salt: Improvement of the asymmetric intermolecular benzoin condensation. Advanced Synthesis and Catalysis. 350(16), 2645-2651.DOI: https://doi.org/10.1002/adsc.200800371

[27] Smirnova, N.V., Klushin, V.A., Bezbozhnaya, T.V., et al., 2018. Selective Oxidation of 5-(Hydroxymethyl) furfural to Furan-2,5-dicarbaldehyde with Sodium Nitrite in Phosphoric Acid. Russian Journal of Organic Chemistry. 54(3), 414-418. DOI: https://doi.org/10.1134/S1070428018030077


Refbacks

  • There are currently no refbacks.
Copyright © 2022 Authors


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.