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Soil erosion associated with land cultivation exerts a great impact on eco-
logical environment. Such an impact is specific of land, crop, tillage, man-
agement and so on. This study aimed to investigate the effects of crop cul-
tivation on water quality by comparing nutrient distribution in the sediment 
at Southern China. Two sedimentation sites adjacent to the uncultivated 
(S1) and cultivated upland (S2) were selected and samples were analyzed. 
Results showed that soil pH decreased with the increasing depth above 20 
cm and then kept relatively stable of the both sediments. Soil organic mat-
ter, nitrogen and phosphorus contents decreased with the increasing depth. 
There was no significant difference between two sediments in organic 
matter and nitrogen contents, but the total phosphorus and extractable phos-
phorus contents in S2 were much higher than that in S1. The data indicated 
that soil eroded from S2 could possess much high potential to deteriorate 
water quality. Nutrient sedimentation can reflect the history of soil erosion 
and provide useful information for sustainable soil management and water 
conservation through improving cultivation and tillage measures.
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1. Introduction

Eutrophication of surface waters is one of the im-
portant factor governing environmental problems 
in the worldwide [1]. The effects of eutrophication 

can be potentially caused catastrophic with blue-green 
algal blooms which have resulted in livestock deaths and 
human sickness and interfered with water supplies [2,3]. 
Nutrients from point and nonpoint sources play important 
roles in accelerating eutrophication of water resources. 
Nutrients from agricultural lands are a main nonpoint 
source and responsible for the eutrophication of river and 

lake in the rural regions [4]. Soil erosion and runoff from 
agriculture are serious in the laterite region because of the 
highly intensive rainfall and land use associated with in-
creasing population and the requirement of economic de-
velopment [5,6]. Sediment in the waters receives materials 
from wet and dry precipitation from air as well as soil ero-
sion and runoff from uplands [7]. But due to adjacent to the 
lands, the sediment may be resulted from the soil erosion 
and runoff from the land [8]. Therefore, the distribution of 
nutrients in the sediment can represent the status of soil 
erosion and then reflect its implications on water quality [9].
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Eroded soil enters water body and deposits in the form 
of sediment [10]. The exchange of energy and material 
between water and sediment can represent and reflect the 
effect of eroded soil on water quality, while this exchange 
is determined in a main extent by the characteristic and 
property of the sediment [11]. Nutrient distribution in the 
sediment is therefore the first important step to concern 
the complex relationship between soil erosion and water 
quality [12,13]. Thus, the aim of this study is to describe the 
distribution pattern of nutrients in the sediment dominat-
ed by soil erosion in a typical erosion region, which can 
provide useful information of the effects of soil erosion 
on the water quality and environment. Moreover, the 137Cs 
isotope tracer technique was successful used in soil ero-
sion rate estimation and sediment source identification [14]. 
The measurement of 137Cs in the sediment here was to ver-
ify and confirm the source of sediment from eroded soil.

2. Materials and Methods

2.1 Study Area

The sample area was located near the Ecological Experi-
mental Station of Red Soil, Yujiang County, Jiangxi Prov-
ince, China. This area is in a typical subtropical monsoon 
climate region with a mean temperature 17.8°C and annu-
al precipitation approximately 1800 mm during the year 
of 1988-1998. The topography in the study area is mainly 
of low hills varied from 30 to 60 m with slopes ranging 
from 3° to 15°. The soils can be classified as a fine, mixed, 
hyperthermic, Typic Hapludult [15].

The selected uncultivated land is located at the position 
of 28.12°N, 116.56°E and has approximate 5 ha with an 
average slope of 12°. The area is covered predominantly 
with sparse masson pines (Pinus massoniana). The culti-
vated land lies at the position of 28.23°N, 116.35°E and 
its area is 6 ha with a slope of 10°. A peanut-cape rotation 
is adopted traditionally on the cultivated land with an av-
erage tillage depth of 15 cm.

2.2 Sampling Method

Soil samples in the uncultivated and cultivated lands were 
collected using a method of multi-point mixture. Sediment 
samples (S1 and S2) were taken from the downward de-
posit places neighboring to the uncultivated and cultivated 
land, respectively. Three sediment columns within one 
square meter were collected using a sediment corer. The 
vertical depth of S1 sediment column was 44 cm and that 
of S2 sediment column was 42 cm. Soil samples in each 
column were cut into 2 cm segment. Sample collection 
date was April of 2018.

2.3 Soil Analysis

The samples were air dried and crushed to pass through a 
2-mm sieve. pH was determined by glass electrode with 
2.5:1 ratio of water to soil. Organic matter was analyzed 
with wet combustion described by Nelson and Sommer [16]. 
Total nitrogen was determined by Kjeldahl method [8]. To-
tal phosphorus (P) and extractable P were determined by 
the digestion method and extracted with 0.5 M NaHCO3, 
respectively[17]. Phosphorus contents were determined by 
molybdenum-blue spectrometer method. Cation-exchange 
capacity (CEC) of soils was determined as described by 
Jackson [18]. The 137Cs activity was measured by g-ray en-
ergy spectrometry. The samples were placed in a standard 
Marinelli beaker which was then located on a horizontally 
oriented 25% relative efficiency hyper-pure germanium 
(HPGE) g-ray detector (Ortec, USA). The detector was 
coupled to spectroscopy-grade amplifiers and a PC-based 
data collection system. Calibration samples were used to 
derive the absolute 137Cs activity in each sample. The av-
erage g-ray detection efficiency was dependent upon the 
mass of the sample in the beaker, a further correction was 
made.

3. Results

3.1 Soil pH

pH in the sediments was shown in Figure 1. In general, 
the pH of S2 was higher than that of S1 with pair compar-
ison (Figure 1). Obviously, pH decreased with increasing 
depth in the profile above 20 cm and then was kept rela-
tively stable. pH in the uncultivated lands in laterite region 
is commonly lower than 5, however pH of the cultivated 
lands in laterite region is usually higher than 5 (Table 1).

Table 1. Selected chemical and physical properties of soil 
in uncultivated and cultivated uplands

Soil pH Organic 
matter Total N Total P Extract-

able P CEC

(2.5:1) (g kg-1) (g kg-1) (g kg-1) (mg kg-1) (cmol kg-1)

Culti-
vated 5.15±0.25 28.81±4.56 1.59±0.11 0.31±0.09 0.96±0.12 84.58±3.21

Unculti-
vated 4.87±0.26 15.23±3.78 0.87±0.13 0.22±0.08 0.06±0.03 75.56±3.45

3.2 Soil Organic Matter

It can be seen from Table 1 that the organic matter con-
tent in the cultivated land was significantly higher than 
that in uncultivated upland. As shown in Figure 2, in both 
sediments, organic matter contents almost decreased with 
increasing depth. But there was no significant difference 
between two sediments except for an abrupt decrease in 
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S2 at about 15 cm depth. However, there was only slight 
difference between the two sediments in organic matter 
contents (Figure 2). As can be seen from the Figure 3, 
there is a good correlation between the 137Cs activity list 
and the organic matter content in the sediment.
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Figure 2. Content of organic matter in the sediment varied 
with the depth
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Figure 3. Organic matter and 137Cs activity inventory in 
sediment

3.3 Soil Nitrogen

The contents of nitrogen (N) and organic matter (C) al-
ways had a good linear relationship in the laterite region. 
Here, the relationship between N and C of two sediment 
points (S1 and S2) in current study could be described as:

N=0.0615C-0.1149, R=0.8727**  (n=22, S1)

N=0.0698C-0.1712, R=0.9627**  (n=21, S2)

The C:N ratio in this study ranged from 14.5 to 22.8 
with an average of 17.4 at both sediment points.

3.4 Soil Phosphorus

The total phosphorus distribution is shown in the Figure 4. 
Except for the fluctuation, total P content in S2 was high-
er than that in S1. Similarly, the extractable P in S2 was 
much higher than that in S1 (Figure 5). These results were 
accordant to that in the corresponding uplands (Table 1). 

Inferred from the pH result, the surface layer of 20 cm 
in the sediment may contribute extractable P to the water. 
Assumed that extractable P in the 20 cm layer can diffuse 
and mixed completely with the surface water, we can 
make a simple estimation to determine the water depth 
(HW) for achieving the P concentration meeting the goal of 
water management. Here, the following equation can be 
used to estimate the depth, HW,

where, CP is the extractable P concentration in the 
sediment, Ha is the active layer depth of sediment (i.e., 
20 cm in this study), S is the area, ρS is the density of the 
sediment, ρW is water density, C0 is the P concentration for 
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Figure 1. Value of pH varied with the depth in sediment
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a goal to control, and HW is the water depth for achieving 
the goal concentration, C0. Assumed C0=0.02 mg kg-1, 
which is the threshold concentration for water eutrophica-
tion, we obtained that HW was 12 and 140 m in the sedi-
ment of S1 and S2, respectively. 
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Figure 4. Vertical distribution of total P in sediment
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4. Discussion

pH is a comprehensive indicator of the physical and 
chemical properties of the medium environment (includ-
ing water, soil, etc.) [19,20,21]. In this study, we found that 
the pH of uncultivated land in the laterite area is usually 
less than 5 (Table 1). But pH varied with different field 
managements and practices in the cultivated lands, e.g. it 
was higher when upland was changed to paddy rice field 
under the same conditions [22,23]. According to pH variation 
in sediment profile, the surface layer of 20 cm depth is 
an active layer between water and sediment in material 
and energy exchange. This surface layer plays the most 
important role on water quality and vice versa. Hence, it 
can be inferred that the measurement of pH is an effective 
and rapid method to determine the depth of active layer 
between sediment and water in lake.

Soil organic matter is an important component of soil, 
and it plays a decisive role in the formation of soil struc-
ture and the improvement of soil physical conditions [24,25]. 
The level of soil organic matter reflects the level of soil 
productivity [26,27]. With long term cultivation and high nu-
trients input, soils, such as rice and vegetable soils contain 
high organic matter in the laterite regions [22,28,29]. There-
fore, it was a common phenomenon that organic matter 
content in cultivated land was much higher than that in 
uncultivated land (Table 1). However, there was only 
slight difference between the two sediments in organic 
matter contents (Figure 2). It remained not fully compre-
hension.

The characteristic of organic matter distribution in 
the sediment is always determined by the deposit rate in 
lakes, and oxygen exposure time to organic matter may 
be responsible for the preservation of organic matter in 
the sediments [30,31]. In the lake sediment, organic matter 
mainly comes from biomass of plankton [32,33]. Because in-
fluenced greatly by soil erosion, the sedimentation points 
in this study differed great to the common sedimentation 
points. The inflexion point in organic matter vertical dis-
tribution of S2 (i.e. 14-18cm) demonstrated the influence 
obviously by soil erosion (Figure 2). This phenomenon 
can be confirmed through the good correlation between 
the inventory of 137Cs activity and the content of organic 
matter in the sediment (Figure 3). Therefore, the dilution 
effect resulted from soil erosion was the main reason to 
shrink the discrepancy between two sediments. Moreover, 
organic matter in the soil eroded from cultivated land may 
be easily decomposed than that from uncultivated land 
[34,35,36]. Some other reasons difficult to be identified may 
also be responsible for the reason.

Similarly, the nitrogen contents in both sediments 
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showed the same distribution pattern as that of organic 
matter. The contents of nitrogen (N) and organic matter (C) 
always had a good linear relationship in the laterite region 
[37]. The C:N ratio in this study ranged from 14.5 to 22.8 
with an average of 17.4 at both sediment points, which 
means those organic matter mainly came from upland not 
plankton. This once again suggested that the effect of soil 
erosion controlled the material source in sediment near 
two uplands.

Total phosphorus (P) distribution pattern was similar to 
that of organic matter in the sediment (Figure 4). Except 
for the fluctuation, total P content in S2 was higher than 
that in S1. Similarly, the extractable P in S2 was much 
higher than that in S1 (Figure 5). These results were ac-
cordant to that in the corresponding uplands (Table 1). In 
agricultural systems, adequate supplies of phosphorus are 
essential for seed and root formation, crop quality, and 
strength of straw in cereals and the accumulation and re-
lease of energy during cellular metabolism [38,39]. In order 
to sustain productivity, P in fertilizers, manures and ani-
mal fodders are imported to the agriculture system. With 
soil erosion and runoff, P moves from agricultural system 
into the environment. But even a small transfer of P from 
agricultural land can apparently contribute to eutrophica-
tion and the proliferation of undesirable biota in surface 
waters from a limnological perspective [40,41]. This means 
P is the most important limitation factor in fresh water 
system [42]. With the effective control and management of 
point-sources, there is an increasing concern that P losses 
from agricultural land considered to be a growing envi-
ronmental problem around the world [43,44]. 

P enters waters in the forms dissolved in liquid and 
contained in soil particle [45]. Particulate movement of P, 
often associated with soil erosion, is a physical mecha-
nism for diffuse transfer from agriculture to waters and is 
an important process in determining P transfer [46]. Except 
for the release of P during transferring, the exchange of 
P between sediment and water also makes an important 
impact on water eutrophication [47,48]. The high content or 
concentration of P in the sediment is a main factor to ac-
celerate the eutrophication process in waters. Especially, 
the sediment came from the cultivated land with high fer-
tilizer and manure inputs [49,50].

In the study, assumed C0=0.02 mg kg-1, which is the 
threshold concentration for water eutrophication [51], we 
obtained that HW was 12 m and 140 m in the sediment of 
S1 and S2, respectively. Despite of the simple and overes-
timated data, it obviously indicated that the sediment from 
cultivated land had much higher potential to contribute to 
water eutrophication than that from uncultivated land.

Overall, the sediment near upland reflects and preserves 

the history of agricultural management on soil erosion. 
Compared with the history of management practice, it can 
be useful for providing reasonable information for agri-
cultural cultivation, consequently controlling soil erosion 
and minimizing the influence on waters.

5. Conclusions

The active layer in the sediment can be determined us-
ing pH measurement. P content is an effective index to 
indicate the influence of eroded soil on water rather than 
organic matter and nitrogen in the sediment, because P is 
stable and not decomposable in the process of soil ero-
sion. The results elucidated that eroded soil from cultivat-
ed land had higher potential to damage water quality than 
that from the uncultivated land. Through investigating the 
nutrient distribution in the sediment near upland, it can 
provide a piece of useful information for evaluating the 
effect of soil erosion on water quality.
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