Influence of Environmental Variables on the Natural Regeneration of a Forest under Restoration after Bauxite Mining and in a Reference Ecosystem in Southeastern Brazil

Authors

  • Kelly de Almeida Silva Forest Restoration Laboratory, Department of Forest Engineering, Universidade Federal de Viçosa (UFV), Viçosa,Minas Gerais State, Brazil
  • Sebastião Venâncio Martins Forest Restoration Laboratory, Department of Forest Engineering, Universidade Federal de Viçosa (UFV), Viçosa,Minas Gerais State, Brazil
  • Aurino Miranda Neto Forest Restoration Laboratory, Department of Forest Engineering, Universidade Federal de Viçosa (UFV), Viçosa,Minas Gerais State, Brazil

DOI:

https://doi.org/10.30564/re.v2i4.2609

Abstract

The shrub-tree floristic composition of the natural regeneration stratum of a bauxite mine in the process of restoration and in a reference ecosystem (remnant of a preserved secondary Seasonal Semi-Deciduous Forest) were analysed to evaluate forest restoration conditions after five years of planting. The influence of canopy openness, accumulated leaf litter and soil attributes in the regeneration stratum were also investigated in both the forests. The floristic composition of the regeneration stratum in the forest under restoration (16 species and 5,083 individuals ha-1) and in the reference ecosystem (58 species and 26,250 individuals ha-1) are distinct due to the difference in the environmental variables. Results showed that the reference ecosystem favours the presence of species that tolerate environments with greater shading and higher aluminium and organic matter content in the soil like Psychotria carthagenensis Jacq., while the forest under restoration favours the presence of species adapted to fertile soils and those that tolerate greater luminosity like Vernonanthura phosphorica (Vell.) H.Rob.

Keywords:

Atlantic Forest, Canopy openness, Ecological, succession Floristics, Mining, Soil analysis

References

[1] Gazell ACF, Righi CA, Stape JL, Campoe OC. Tree species richness, does it play a key role on a forest restoration plantation? Bosque, 2012, 33(3): 245- 248. http://dx.doi.org/10.4067/S0717-92002012000300002

[2] Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 2018, 16(4): 208-214. https://doi.org/10.1016/j.pecon.2018.10.002

[3] Pinto LP, Hirota M, Calmon M, Rodrigues RR, Rocha R. Introdução. In: Rodrigues RR, Brancalion PHS, Isernhagen I (eds) Pacto pela restauração da Mata Atlântica: referencial dos conceitos de restauração florestal. LERF/ESALQ/Instituto BioAtlântica, São Paulo, 2009: 6-10. ISBN: 978-85-60840-02-1

[4] Scarano FR, Ceotto P. Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation, 2015, 24: 2319-2331. http://dx.doi.org/10.1007/s10531-015-0972-y

[5] Fundação SOS Mata Atlântica, INPE. Atlas dos remanescentes florestais da Mata Atlântica. Arcplan, São Paulo, 2019.

[6] Silva KA, Martins SV, Miranda Neto A, Campos WH. Direct sowing with transposition of litter as methodology of ecological restoration. Revista Árvore, 2015, 39(5): 811-820. (in Portuguese) http://dx.doi.org/10.1590/0100-67622015000500004

[7] Deluca TH, Aplet GH, Wilmer B, Burchfield J. The unknown trajectory of forest restoration: a call for ecosystem monitoring. Journal of Forestry, 2010, 108(6): 288-295. https://doi.org/10.1093/jof/108.6.288

[8] Lechner AM, McIntyre N, Witt K, Raymond CM, Arnold S, Scott M, Rifkin W. Challenges of integrated modelling in mining regions to address social, environmental and economic impacts. Environmental Modelling & Software, 2017, 93: 268-281. https://doi.org/10.1016/j.envsoft.2017.03.020

[9] Grant CD, Ward SC, Morley SC. Return of ecosystem function to restored bauxite mines in western Australia. Restoration Ecology, 2007, 15(s4): S94-S103. http://dx.doi.org/10.1111/j.1526-100X.2007.00297.x

[10] Vilas Boas HF, Almeida LFJ, Teixeira RS, Souza IF, Silva IR. Soil organic carbon recovery and coffee bean yield following bauxite mining. Land Degradation & Development, 2018, 29(6): 1565-1573. https://doi.org/10.1002/ldr.2949

[11] Chazdon RL. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 2008, 320: 1458-1460. http://dx.doi.org/10.1126/science.1155365

[12] Jefferson LV. Implications of plant density on the resulting community structure of mine site land. Restoration Ecology, 2004, 12(3): 429-438. http://dx.doi.org/10.1111/j.1061-2971.2004.00328.x

[13] Macdonald SE, Landhaüsser SM, Skousen J, Franklin J, Frouz J, Hall S, Jacobs DF, Quideau S. Forest restoration following surface mining disturbance: challenges and solutions. New Forests, 2015, 46: 703-732. http://dx.doi.org/10.1007/s11056-015-9506-4

[14] Brancalion PHS, Viani RAG, Rodrigues RR, Gandolfi S. Avaliação e monitoramento de áreas em processo de restauração. In: Martins SV (ed) Restauração ecológica de ecossistemas degradados, 2nd edn. Editora UFV, Viçosa, 2015: 262-292.

[15] Martins SV. Recuperação de áreas degradadas: ações em áreas de preservação permanente, voçorocas, taludes rodoviários e de mineração, 4th edn. Aprenda Fácil, Viçosa, 2016. ISBN: 9788583660729

[16] Martins WBR, Lima MDR, Barros Junior UO, Amorim LSV, Oliveira FA, Schwartz G. Ecological methods and indicators for recovery and monitoring ecosystems after mining: A global literature review. Ecological Engineering, 2020, 145: 105707. https://doi.org/10.1016/j.ecoleng.2019.105707

[17] Silva KA, Martins SV, Miranda Neto A, Lopes, AT. Soil seed banks in a forest under restoration and in a reference ecosystem in south eastern Brazil. Floresta e Ambiente, 2019, 26(4): e20190047. https://doi.org/10.1590/2179-8087.004719

[18] Silva KA, Martins SV, Miranda Neto A, Lopes, AT. Litter stock in a forest in process of restoration after bauxite mining. Rodriguésia, 2018, 69(2): 853-861. (in Portuguese) https://doi.org/10.1590/2175-7860201869240

[19] Ávila MA, Souza SR, Veloso MDM, Santos RM, Fernandes LA, Nunes YRF. Structure of natural regeneration in relation to soil properties and disturbance in two swamp forest. CERNE, 2016, 22: 1-10. http://dx.doi.org/10.1590/01047760201622012086

[20] Martins SV, Kunz SH. Use of evaluation and monitoring indicators in a riparian forest restoration project in Viçosa, southeastern Brazil. In: Rodrigues RR, Martins SV, Gandolfi S (eds) High diversity forest restoration in degraded areas. Nova Science Publishers, New York, 2007: 261-273. ISBN: 1600214215

[21] Estrada-Villegas S, Bailón M, Hall JS, Schnitzer AS, Turner BL, Caughlin T, van Breugel M. Edaphic factors and initial conditions influence successional trajectories of early regenerating tropical dry forests. Journal of Ecology, 2020, 108: 160-174. https://doi.org/10.1111/1365-2745.13263

[22] Sá Júnior A, Carvalho LG, Silva FF, Alves NC. Applicacion of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theoretical and Applied Climatology, 2012, 108: 1-7. http://dx.doi.org/10.1007/s00704-011-0507-8

[23] Agevap - Associação pró-gestão das águas da bacia hidrográfica do Rio Paraíba do Sul. Plano municipal de saneamento básico, São Sebastião da Vargem Alegre, MG. PrintPaper Editora Gráfica, 2013

[24] IBGE - Instituto Brasileiro de Geografia e Estatística. Manual Técnico da Vegetação Brasileira. 2nd edition, Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, BR, 2012, 275. ISBN: 978-85-240-4272-0

[25] Angiosperm Phylogeny Group IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society, 2016, 181: 1-20. http://dx.doi.org/10.1111/boj.12385

[26] Mueller-Dombois D, Ellenberg H. Aims and methods of vegetation ecology, New York, Wiley and Sons, 1974. ISBN: 1-930665-73-3

[27] Alvarez V VH, Novais RF, Barros NF, Cantarutti RB, Lopes AS. Interpretação dos resultados das análises de solo. In: Ribeiro AC, Guimarães PTG, Alvarez V VH (eds) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais - 5ª Aproximação. CFSEMG, Viçosa, 1999: 25-32.

[28] Frazer GW, Canham CD, Lertzman KP. Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby (BC), 1999.

[29] ter Braak CJF. Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge (UK), 1995: 91-173. IBSN: 9780511525575

[30] Magnago LFS, Martins SV, Venzke TS, Ivanauskas NM. Os processos e estágios sucessionais da Mata Atlântica como referência para a restauração florestal. In: Martins SV (ed) Restauração ecológica de ecossistemas degradados, 2nd edn. Editora UFV, Viçosa, 2015: 70-101.

[31] Miranda Neto A, Martins SV, Silva KA, Lopes AT, Demolinari RA. Natural regeneration in a restored bauxite mine in southeast Brazil. Bosque, 2014, 35(3): 377-389. http://dx.doi.org/10.4067/S0717-92002014000300012

[32] Marcuzzo SB, Araújo MM, Rorato DG, Machado J. Comparison between areas in restoration and reference área in Rio Grande do Sul, Brazil. Revista Árvore, 2014, 38(6): 961-972. (in Portuguese) http://dx.doi.org/10.1590/S0100-67622014000600001

[33] Miranda Neto A, Martins SV, Silva KA, Gleriani JM. Natural regeneration layer of restored forest with 40 years old. Pesquisa Florestal Brasileira, 2012, 32(72): 409-420. http://dx.doi.org/10.4336/2012.pfb.32.72.409

[34] Sartori RA, Carvalho DA, van den Berg E, Marques JJGSM, Santos RM. Structural and floristic variations of the arboreal componente of a montane semideciduous forest in Socorro, SP. Rodriguésia, 2015, 66(1): 33-49. (in Portuguese) http://dx.doi.org/10.1590/2175-7860201566103

[35] Jesus EN, Santos TS, Ribeiro GT, Orge MDR, Amorim VO, Batista RCRC. Natural regeneration of plant species in revegetated mining areas. Floresta Ambient, 2016, 23: 191-200. (in Portuguese) http://dx.doi.org/10.1590/2179-8087.115914

[36] Carvalho MM. Recuperação de pastagens degradadas em áreas de relevo acidentado. In: Dias LE, Mello LWV (eds) Recuperação de áreas degradadas. Editora UFV, Viçosa, 1998: 149-161.

[37] Jaquetti RK, Goncalves JFC. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia. Anais da Academia Brasileira de Ciências, 2017, 89(3): 1761-1771. https://doi.org/10.1590/0001-3765201720160734

[38] Resende AV, Kondo MK. Leguminosas e recuperação de áreas degradadas. Informe Agropecuário, 2001, 22: 46-56.

[39] Delprete PG, Jardim JG. Systematics, taxonomy and floristics of Brazilian Rubiaceae: an overview about the current status and future challenges. Rodriguésia, 2012, 63(1): 101-128. http://dx.doi.org/10.1590/S2175-78602012000100009

[40] Hopkins MJD. Flora da Reserva Ducke, Amazonas, Brasil (The English translation: Flora of the Ducke Reserve, Central Amazon, Brazil). Rodriguésia, 2005, 58(86): 9-25. https://doi.org/10.1590/2175-78602005568602

[41] Paiva RVE, Ribeiro JHC, Carvalho FA. Structure, diversity and heterogeneity of regeneration stratum in an urban forest fragment after 10 years of forest succession. Floresta, 2015, 45(3): 535-544. (in Portuguese) http://dx.doi.org/10.5380/rf.v45i3.34533

[42] Silva RG, Faria RAVB, Moreira LG, Pereira TL, Silva CH, Botelho SA. Evaluation of the restoration process of a degraded permanent preservation area in the south of Minas Gerais, Brazil. Revista em Agronegócio e Meio Ambiente, 2016, 9(1): 147-162. (in Portuguese)http://dx.doi.org/10.17765/2176-9168.2016v9n1p147-162

[43] Ferreira WC, Botelho SA, Davide AC, Faria JMR. Establishment of riparian forest at the margins of the reservior of the Camargos Hydroeletric Plant, Minas Gerais. Ciência Florestal, 2009, 19(1): 69-81. (in Portuguese) https://doi.org/10.5902/19805098421

[44] Fonseca NG, Jacobi CM. Germination performance of the invader Leucaena leucocephala (Lam.) de Wit. compared to Caesalpinia ferrea Mart. ex Tul. and C. pulcherrima (L.) Sw. (Fabaceae). Acta Botanica Brasilica, 2011, 25(1): 191-197. (in Portuguese) http://dx.doi.org/10.1590/S0102-33062011000100022

[45] Santilli C, Durigan G. Do alien species dominate plant communities undergoing restoration? A case study in the Brazilian savanna. Scientia Forestalis, 2014, 42(103): 371-382.

[46] Christo AG, Guedes-Bruni RR, Sobrinho FAP, Silva AG, Peixoto AL. Structure of the shrub-arboreal component of an Atlantic forest fragment on a hillock in the central lowland of Rio de Janeiro, Brazil. Interciência, 2009, 34(4): 232-239

[47] Franco BKS, Martins SV, Faria PCL, Ribeiro GA, Miranda Neto A. Natural regeneration layer of a semideciduous forestfragment in Viçosa, Minas Gerais state, Brazil. Revista Árvore, 2014, 38(1): 31- 40. (in Portuguese) http://dx.doi.org/10.1590/S0100-67622014000100003

[48] Garcia CC, Reis MGF, Reis GG, Pezzopane JEM, Lopes HNS, Ramos DC. Natural regeneration of tree species in a mountain seasonal semideciduous forest fragment in the Atlantic Forest domain, in Viçosa, MG state, southeastern Brazil. Ciência Florestal, 2011, 21(4): 677-688. (in Portuguese) https://doi.org/10.5902/198050984512

[49] Braga AJT, Borges EEL, Martins SV. Influence of soil factors on floristic variation in semideciduous seasonal forest in Viçosa, MG. Revista Árvore, 2015, 39(4): 623-633. (in Portuguese) http://dx.doi.org/10.1590/0100-67622015000400004

[50] Liuth HS, Talora DS, Amorim AM. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil. Acta Botanica Brasilica, 2013, 27(1): 195-204. http://dx.doi.org/10.1590/S0102-33062013000100019

[51] Conte R, Reis A, Mantovani A, Mariot A, Fantini AC, Nodari RO, Reis MS. Dinâmica da regeneração natural de Euterpe edulis Martius (Palmae) na Floresta Ombrófila Densa da Encosta Atlântica. In: Reis MS, Reis A (eds) Euterpe edulis Martius (palmiteiro): biologia, conservação e manejo. Herbário Barbosa Rodrigues, Itajaí, 2000: 106-130.

[52] Descheemaeker K, Muys B, Nyssen J, Poesen J, Raes D, Haile M, Deckers J. Litter production and organic matter accumulation in exclosures of the Tigray highlands, Ethiopia. Forest Ecololgy and Management, 2006, 233(1): 21-35. https://doi.org/10.1016/j.foreco.2006.05.061

[53] Rocha JHT, Santos AJM, Diogo FA, Backes C, Melo AGC, Borelli C, Godinho TO. Reforestation and recovery of soil chemical and physical attributes. Floresta e Ambiente, 2015, 22(3): 299-306. (in Portuguese) http://dx.doi.org/10.1590/2179-8087.041613

[54] Kinupp VF, Magnusson WE. Spatial patterns in the understorey shrub genus Psychotria in central Amazonia: effects of distance and topography. Journal of Tropical Ecology, 2005, 21(4): 363-374. https://doi.org/10.1017/S0266467405002440

[55] Lima JAS, Meneguelli NA, Gazel Filho AB, Pérez DV. Grouping tree species of a tropical forest based on soil characteristics. Pesquisa Agropecuária Brasileira, 2003, 38(1): 109-116. (in Portuguese) http://dx.doi.org/10.1590/S0100-204X2003000100015

[56] Thusithana V, Bellairs SM, Bach CS. Seed germination of coastal monsoon vine forest species in the Northern Territory, Australia, and contrasts with evergreen rainforest. Australian Journal of Botany, 2018, 66(3): 218-229. https://doi.org/10.1071/BT17243

Downloads

How to Cite

Almeida Silva, K. de, Martins, S. V., & Neto, A. M. (2021). Influence of Environmental Variables on the Natural Regeneration of a Forest under Restoration after Bauxite Mining and in a Reference Ecosystem in Southeastern Brazil. Research in Ecology, 2(4), 31–41. https://doi.org/10.30564/re.v2i4.2609

Issue

Article Type

Articles